23.11.2014 Views

xxiii πανελληνιο συνεδριο φυσικης στερεας καταστασης & επιστημης ...

xxiii πανελληνιο συνεδριο φυσικης στερεας καταστασης & επιστημης ...

xxiii πανελληνιο συνεδριο φυσικης στερεας καταστασης & επιστημης ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

doped ZnO after annealing [11]. Finally Nord et al [12] predicted N segregation in ion implanted GaN with molecular<br />

dynamics calculations while N 2 bubbles formed after 2 and 4.7 MeV Au implantation into GaN are apparent in transmission<br />

electron micrographs [6]. The RL related to the N 2 gaseous bubbles disappears after RTA at 800 o C, as shown in Fig. 1. This<br />

implies that either N 2 outdiffuses from the sample and/or that the N – N bonds dissociate and new Ga-N are formed (even<br />

though the formation of In-N bonds cannot be excluded). In addition to that, annealing also partially restores the<br />

characteristics of the NEXAFS peaks, indicating partial recovery of the implantation induced lattice damage.<br />

In conclusion, implantation of GaN with 700 keV In ions and a fluence of 5x10 15 cm -2 results to the formation of a<br />

200nm – thick surface amorphous layer while the underlying GaN layer is severely defected. Furthermore, implantation<br />

causes the evolution of a sharp resonance line that appears above the N K absorption edge. On the basis of the presented<br />

experimental evidence the RL is attributed to the implantation induced formation of N 2 . Finally, rapid thermal annealing at<br />

800 - 900 o C is insufficient for the complete recovery of the implantation induced lattice damage.<br />

Acknowledgement: The measurements at ELETTRA were financially supported by the “PYTHAGORAS” program of the<br />

Greek Ministry of Education and the ELETTRA user program.<br />

[1] Group III-nitride Semiconductor Compounds: Physics and Applications, edited by B. Gil (Oxford, Clarendon, 1998).<br />

[2] E. Borsela, M. A. Garcia, G. Mattei, C. Maurizio, P. Mazzoldi, E. Cattaruzza, F. Gonella, G. Battaglin, A. Quaranta and<br />

F. D’Acapito, J. Appl. Phys, 90, 4467 (2001).<br />

[3] A. B. Denison, Louisa J. Hope-Weeks‚, Robert W. Meulenberg, and L. J. Terminello, in Introduction to Nanoscale<br />

Science and Technology, edited by Massimiliano Di Ventra (Kluwer Academic Publishers, Boston, 2004), p.194-198.<br />

[4]R. A. Oliver, G. Andrew D. Briggs, M. J. Kappers, C. J. Humphreys, S. Yasin, J. H. Rice, J. D. Smith and R. A. Taylor,<br />

Appl. Phys. Lett. 83, 755 (2004).<br />

[5] A. Fukami, K. -I. Shoji, T. Nagano, and C. Y. Yang, Appl. Phys. Lett. 57, 2345 (1990).<br />

[6] S. O. Kucheyev, J. S. Williams, J. Zou, C. Jagadish and G. Li, Appl. Phys. Lett. 77, 3577 (2000).<br />

[7] T. D. Moustakas, T. Lei, and R. J. Molnar, Physica B 185, 36 (1993).<br />

[8] M. Katsikini, F. Pinakidou, E. C. Paloura and W. Wesch, Appl. Phys. Lett. 82, 1556 (2003).<br />

[9] Y. Xin, E. M. James, I. Arslan, S. Sivananthan, N. D. Browning, S. J. Pennycook, F. Omnes, B. Beaumont, J.-P. Faurie,<br />

and P. Gibart, Appl. Phys. Lett. 76, 466 (2000).<br />

[10] M. Petravić, Q. Gao, D. Llewellyn, P. N. K. Deenapanray, D. Macdonald, and C. Crotti, Chem. Phys. Lett. 425, 262<br />

(2006).<br />

[11] P. Fons, H. Tampo, A. V. Kolobov, M. Ohkubo, S. Niki, J. Tominaga, R. Carboni, F. Boscherini, S. Friedrich, Phys. Rev.<br />

Lett., 96, 045504 (2006).<br />

[12] J. Nord, K. Nordlund, and J. Keinonen, Phys. Rev. B 68, 184104 (2003).<br />

44

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!