21.04.2013 Views

ETTC'2003 - SEE

ETTC'2003 - SEE

ETTC'2003 - SEE

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

∆ T dét. (°C/g)<br />

10<br />

1<br />

0,1<br />

0,01<br />

CO 2<br />

air<br />

100 µm : slope = -1,77<br />

300 µm : slope = -1,86<br />

500 µm : slope = -1,99<br />

1E-3<br />

1E-5 1E-4<br />

a ( m 2 .s -1 )<br />

Figure 10: Sensor sensitivity ∆T vs. heater temperature rise.<br />

det.<br />

S 0 (°C / g)<br />

1000<br />

100<br />

10<br />

1<br />

0,1<br />

1 10<br />

p (bar)<br />

∆T = 183 °C<br />

100 µm<br />

300 µm<br />

500 µm<br />

- - - - n = 2<br />

Figure 11: Sensor sensitivity ∆T vs. nitrogen pressure.<br />

det.<br />

Since the sensitivity of these sensors is proportional<br />

to the differential temperature ∆Tdet, the acceleration<br />

range where the response is linear is necessarily limited<br />

because a linear response including high accelerations<br />

should lead to a differential temperature ∆Tdet higher than<br />

the heater temperature rise ∆T : it is obviously impossible<br />

and we assume that an infinite acceleration should give<br />

the equality ∆Tdet = ∆T. Therefore, we have defined a<br />

sensitivity S0 for the linear response range and it is this<br />

sensitivity which is studied afterwards.<br />

The sensor is placed in an hermetic chamber, a hole<br />

is made in the TO16 and a manometer controls the gas<br />

pressure. The gas is nitrogen and its pressure ranges from<br />

1 to 30 bars. Figure 11 presents the sensor sensitivity S0 for<br />

the linear response range . In low pressure range, the<br />

curve<br />

slope n is close to 2 in a log-log scale so, the<br />

sensitivities are proportional to the square of the gas<br />

pressure in good accordance with the model based on the<br />

Grashof number. For higher pressure, a deviation of the<br />

square law is observed and different optimum pressures<br />

are obtained according to the distance heater/detectors.<br />

The best sensitivity S0 is 168°C/g, the same order than the<br />

heater temperature rise, for a distance heater/detectors of<br />

300 µm and a pressure of 25 bars.<br />

4.6. Linearity and bandwidth<br />

With air at atmospheric pressure, measurements in a<br />

centrifuge have shown that the sensor has a good linearity<br />

for a range about 0-3g and a 3dB-bandwidth of 20 Hz is<br />

measured by applying a sinusoidal acceleration [12].<br />

F. Mailly et Al. ETTC 2003<br />

He<br />

5. Conclusion<br />

A micromachined thermal accelerometer without proof<br />

mass has been manufactured using the techniques of<br />

micromachining silicon and its sensitivity has been<br />

proven to be proportional to the Grashof number.<br />

References<br />

[1]<br />

U. A. Dauderstädt, P.H.S. de Vries, R. Hiratsuka, P.M. Sarro, Silicon<br />

accelerometer based on thermopiles, Sens. Actuators A 46-47 (1995) 201-<br />

204.<br />

[2] U. A. Dauderstädt, P.H.S. de Vries, R. Hiratsuka, J.G. Korvink, P.M.<br />

Sarro, H. Baltes and S. Middelhoek, Simulation aspects of a thermal<br />

accelerometer, Sens. Actuators A 55 (1996) 3-6.<br />

[3] U. A. Dauderstädt,<br />

P.M. Sarro and P.J. French, Temperature<br />

dependence<br />

and drift of a thermal accelerometer, Sens. Actuators A 66<br />

(1998) 244-249.<br />

[4] R. Dao, D.E. Morgan, H.H. Kries, D.M. Bachelder, Convective<br />

accelerometer and inclinometer, US Patent n° 5,581,034 (1996).<br />

[5] V. Milanovic, E. Bowen, M. E. Zaghloul, N. H. Tea , J. S. Suehle,<br />

B.<br />

Payne,<br />

and M. Gaitan, Micromachined convective accelerometers in<br />

standard integrated<br />

circuits technology, Appl. Phys. Lett. 76 (4) (2000)<br />

508-510.<br />

[6] V. Milanovic, E. Bowen, N. Tea , J. Suehle, B. Payne, M. Zaghloul,<br />

and M. Gaitan, Convection-based Accelerometer and Tilt Sensor<br />

Implemented<br />

in Standard CMOS, International Mechanical Engineering<br />

and Exposition, MEMS Symposia, Anaheim, CA, (1998) 627-630.<br />

[7] A.M. Leung, J. Jones, E. Czyzewska, J. Chen<br />

and B. Woods,<br />

Micromachined<br />

accelerometer based on convection heat transfer, MEMS<br />

98 (1998) 627-630.<br />

[8] A.M. Leung,<br />

J. Jones, E. Czyzewska, J. Chen, M. Pascal,<br />

Micromachined<br />

accelerometer with no proof mass, Technical Digest of<br />

Int. Electron Device Meeting (IEDM97), (1997) 899-902.<br />

[9]<br />

S. Billat, H. Glosch, M. Kunze, F. Hedrich, J. Frech, J. Auber, H.<br />

Sandmaier, W. Wimmer and W. Lang, Micromachined inclinometer with<br />

high sensitivity and very good stability, Sens. Actuators A 97-98 (2002)<br />

125-130.<br />

[10]<br />

X.B. Luo, Y.J. Yang, F. Zheng, Z.X. Li and Z.Y. Guo, An optimized<br />

micromachined convective accelerometer with no proof mass, J.<br />

Michromech. Microeng. 11 (2001) 504-508.<br />

[11] X.B. Luo, Z.X. Li, Z.Y. Guo and Y.J. Yang, Study on linearity<br />

of a<br />

micromachined<br />

convective accelerometer, Microelectronic Engineering<br />

65 (2003) 87-101.<br />

[12] F. Mailly, A. Giani,<br />

A. Martinez, R. Bonnot, P. Temple-Boyer and A.<br />

Boyer,<br />

Micromachined thermal accelerometer, Sens. Actuators A 103 (3)<br />

(2003), p. 359-363.<br />

[13] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy and A. Boyer,<br />

Design<br />

of a micromachined thermal accelerometer : thermal simulation<br />

and experimental results, Microelectronics Journal 34 (4), p. 275-280.<br />

[14] F. Mailly, Etude et réalisation de microcapteurs thermiques :<br />

anémomètre<br />

et accéléromètre thermique, Ph.D. Thesis, Université<br />

Montpellier<br />

II, France (2002).<br />

[15] P. Temple-Boyer, C. Rossi, E Saint-Etienne, and E. Scheid, Residual<br />

stress in low pressure chemical vapor deposition<br />

SiNx films deposited<br />

from<br />

silane and ammonia, J. Vac. Sci. Technol. A 16(4) (1998) 2003-<br />

2007.<br />

[16] A Giani, F. Mailly,<br />

F. Pascal-Delannoy, A. Foucaran, and A. Boyer,<br />

Investigation<br />

of Pt/Ti bilayer on SiNx/Si substrates for thermal sensor<br />

applications, J. Vac. Sci. Technol. A 20 (1) (2002) 112-116.<br />

[17] F. Mailly, A. Giani, R. Bonnot, P. Temple-Boyer, F. Pascal-<br />

Delannoy,<br />

A. Foucaran and A. Boyer, Anemometer with hot platinum thin<br />

film, Sens. Actuators A 94 (2001) 32-38.<br />

[18] R. Dao, Thermal accelerometers Temperature Compensation,<br />

MEMSIC<br />

Application note (2002), www.memsic.com.<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!