28.11.2014 Views

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

It is important to note that even in the later case the pressure<br />

in the reservoir was maintained below the maximum<br />

possible in order to avoid damaging the lens. Fig.7 shows<br />

how the laser spot moves on the screen as the pressure in<br />

the liquid reservoir is increased above the atmospheric<br />

pressure.<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

Fig. 7. The laser spot movement on the screen as the pressure in the<br />

liquid reservoir is increased from atmospheric (a) to the maximum pressure<br />

(f) sustained via the micro-pump. The incident laser beam is parallel to the<br />

optical axis of the lens but is fired 8mm from the center of the lens.<br />

IV. CONCLUSIONS<br />

We have demonstrated the fabrication and<br />

characterization of a large area adaptive fluid-lens. The<br />

fabrication process is extremely simple as no nanofabrication<br />

techniques are required. The focal-length range<br />

of the adaptive lens varies from infinity to 0.565m<br />

depending on the pressure within its fluid reservoir. Such<br />

adaptive lenses can find use in ophthalmic optics (digital<br />

eye-glasses for example), astronomical optics (because the<br />

gravity will not affect the membrane-curvature of the lens)<br />

or telecoms applications (beam steering and fiber to fiber<br />

connections). In future, the fabrication steps could be easily<br />

enhanced and the reliability of some aspects have to be<br />

investigated like delaminating between layers, the possible<br />

evolution of the mechanical properties of PDMS and the<br />

tightness of the structure because the PDMS is known to be<br />

porous.<br />

REFERENCES<br />

[1]. K. Krause, “Acceptance of progressive lenses”, Klin Monatsble<br />

Augenheilkd. 209 (2-3), 1996, pp 94-99.<br />

[2]. G. Li et al., “Switchable electro-optic diffractive lens with high<br />

efficiency for ophthalmic applications”, in Proceeding of the<br />

National Academia of Sciences of U S A, vol. 103(16), 2006, pp.<br />

6100-6104.<br />

[3]. Y. Liu, L. Warden, K. Dillon, G. Mills, A. Dreher, “Z-View<br />

diffractive wavefront sensor: principle and applications”, In<br />

Proceeding of SPIE, 6018, 2005, pp. 78-86.<br />

(f)<br />

11-13 <br />

May 2011, Aix-en-Provence, France<br />

<br />

[4]. T. Nose, S. Masuda, and S. Sato, “A Liquid Crystal Microlens<br />

with Hole-Patterned Electrodes on Both Substrates”, Japanese<br />

Journal of Applied Physics, vol. 31(Part 1, No. 5B), 1992, pp.<br />

1643-1646.<br />

[5]. S. Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length”,<br />

Japanese Journal of Applied Physics, vol. 18 (9), 1979, pp. 1679-<br />

1684.<br />

[6]. M. Y. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V.<br />

Vdovin, G. D. Love, and A. F. Naumov, “Wave front control<br />

systems based on modal liquid crystal lenses”, Review of<br />

Scientific Instruments, vol. 71(9), 2000, pp. 3290-3297.<br />

[7]. S. Sato, A. Sugiyama, and R. Sato, “Variable-Focus Liquid-<br />

Crystal Fresnel Lens”, Japanese Journal of Applied Physics, vol.<br />

24 (8, Part 2), 1985, pp. 626-628.<br />

[8]. S. T. Kowel, P. Kornreich, and A. Nouhi, “Adaptive spherical<br />

lens”, Applied Optics, vol. 23, 1984, pp. 2774-2777.<br />

[9]. Y. Takaki and H. Ohzu, “Liquid-crystal active lens: a<br />

reconfigurable lens employing a phase modulator”, Optics<br />

Communications, vol. 126(1-3), 1996, pp. 123-134.<br />

[10]. L. N. Thibos and A. Bradley, “Use of liquid-crystal adaptiveoptics<br />

to alter the refractive state of the eye”, Optometry and<br />

Vision Science, vol. 74(7), 1987, pp. 581-587.<br />

[11]. V. Presnyakov, K. Asatryan, T. Galstian, and A. Tork, “Polymerstabilized<br />

liquid crystal for tunable microlens applications”,<br />

Optics Express, vol. 10(17), 2002, pp. 865-870.<br />

[12]. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for<br />

miniature cameras”, Applied Physics Letters, vol. 85(7), 2004, pp.<br />

1128-1130.<br />

[13]. C. Gabay, B. Berge, G. Dovillaire, and S. Bucourt, “Dynamic<br />

study of a Varioptic variable focal lens”, In Proceeding of SPIE<br />

4767, (2002), pp. 159-165.<br />

[14]. K.-H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable<br />

micro-doublet lens array”, Optics Express , vol. 12(11), (2004),<br />

pp. 2494-2500.<br />

[15]. L. Dong, A. K. Agarwal, D. J. Beebe, and H. Jiang, “Adaptive<br />

liquid microlenses activated by stimuli-responsive hydrogels”,<br />

Nature, vol. 442, 2006, pp. 551-554.<br />

[16]. M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan,<br />

“Polymer-based variable focal length microlens system”, Journal<br />

of Micromechanics and Microengineering , vol. 14(12), 2004, pp.<br />

1665-1673.<br />

[17]. D.-Y. Zhang, N. Justis, and Y.-H. Lo, Fluidic adaptive lens of<br />

transformable lens type, Applied Physics Letters, vol. 84(21),<br />

2004, pp. 4194-4196.<br />

[18]. H. Ren, Y.-H. Fan, S.-T. Wu, “Adaptive liquid crystal lenses”,<br />

US patent No: 6,859,333 B1 , February 22, 2005.<br />

[19]. N. Chronis, G. Liu, K.-H. Jeong, and L. Lee, “Tunable liquidfilled<br />

microlens array integrated with microfluidic network”,<br />

Optics Express, vol. 11(19), 2003, pp. 2370-2378.<br />

244

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!