28.11.2014 Views

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fig. 6<br />

Voltage (mv)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

PZT<br />

Subst<br />

rate<br />

Stress<br />

Neutral axis<br />

PZT<br />

subst<br />

rate<br />

(a)<br />

(b)<br />

Neutral axis lies (a) within substrate (b) within PZT<br />

0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

thinkess ratio, substrate/PZT layers<br />

Fig. 7 output voltage vs. thickness ratio when different Young’s module ratio<br />

Table 2 best output, thickness ratio and bending stiffness in different substrate<br />

Young’s modulus ratio 0.5 1.0 1.6 2.8<br />

Best thickness ratio 3.61 2.11 1.40 0.98<br />

Bending stiffness 0.063 0.026 0.017 0.012<br />

Best Output (V) 0.071 0.078 0.084 0.090<br />

V. Conclusion<br />

Young's modulus ratio 2.8<br />

Young's modulus ratio 1.6<br />

Young's modulus ratio 1<br />

In this paper, an analytical solution of a fixed-fixed beam<br />

type piezoelectric transformer with Euler-Bernoulli beam<br />

assumption is proposed. Mechanical response, voltage,<br />

current, and power outputs of piezoelectrical transformers are<br />

presented. The model is then used for parameter study. From<br />

analytical model, output voltage depends on the lengthes of<br />

two electrodes, the length of beam, and the Young’s modulus<br />

ratio and thickness ratio between PZT layer and substrate.<br />

The lengthes of input electrodes and output electrodes should<br />

be 0.22L to achieve the largest output when the transformer<br />

is excited at first resonance frequency. The output voltages<br />

and the resonance frequnecies of transformers are<br />

proportional and inversely proportional to the lengthes of<br />

beams, respectively. The combination of Young’s modului<br />

and thicknesses of PZT layer and substrate change the<br />

position of netual axis and the bending stiffness of beam,<br />

concurrently. However, output voltages of transfomers<br />

depend not only on the postion of neutral axes but also on<br />

bending stiffnesses.<br />

11-13 May 2011, Aix-en-Provence, France<br />

<br />

References<br />

[1] C. A. Rosen, “Ceramic transformers and Filters,”<br />

Proceeding of electronic Components Symposium,<br />

Washington, D. C., May 1-3 (1956) 205-211<br />

Stress<br />

[2] Y.-H. Hsu, C.-K. Lee, W.-H. Hsiao, “Optimizing<br />

piezoelectric transformer for maximum power transfer,”<br />

Smart Material and Structure, 12(2003) 373-83<br />

[3] R.-L. Lin, “Piezoelectric transformer characterization<br />

and application of electronic ballast,” PhD Dissertation,<br />

Virginia Polytechnic Institute and state University, USA,<br />

2001<br />

[4] E. M. Baker, W. Huang, D. Y. Chen, F. C. Lee, “Radial<br />

mode piezoelectric transformer design for fluorescent lamp<br />

ballast application,” 33 rd Annual IEEE Power Electronics<br />

Specialists, Cairns, Queensland, Australia, June 23-27 (2002)<br />

1289-94<br />

[5] J.-M. Seo, H.-W. Joo, H.-K. Jung, “Optimal design of<br />

piezoelectric transformer for high efficiency and high power<br />

density,” Sensors and Actuators A, 121 (2005) 520-526<br />

[6] M. C. Do, H. Guldner, “High output voltage DC/DC<br />

converter based on parallel connection of piezoelectric<br />

transformers,” International Symposium on Power<br />

electronics, Electrical Drives, Automation and Motion,<br />

Taormina, Italy, May 23-26, (2006) S18<br />

[7] T. Inoue, S. Hamamura, M. Yamamoto, A. Ochi, Y.<br />

Sasaki, “AC-DC converter based on parallel drive of two<br />

piezoelectric transformer,” Japanese Journal of Applied<br />

Physics, 47 (2008) 4011-4014<br />

[8] S. Roundy, P. K. Wright, J. M. Rabaey, “A Study of<br />

Low Level Vibrations as a Power Source for Wireless Sensor<br />

Nodes,” Computer Communications, 26 (2003) 1131-1144<br />

[9] N. E. duToit, B. L. Wardle, S.-G. Kim, “Design<br />

considerations for MEMS-scale piezoelectric mechanical<br />

vibration energy harvesters,” Integrated Ferroelectrics, 71<br />

(2005) 121-160<br />

[10] S. T. Ho, “Electromechanical Model of a Longitudinal<br />

Mode piezoelectric Transformer,” The Seventh International<br />

Conference on Power Electronics and Drive Systems,<br />

Bangkok, Thailand, November 27-30, (2007) 267-272<br />

[11] A. Erturk, D. J. Inman, “A distributed parameter<br />

electromechanical model for cantilevered piezoelectric<br />

energy harvesters,” Journal of Vibration and Acoustics, 130<br />

(2008) 041002<br />

[12] A. Erturk, and D.J. Inman, “On mechanical modeling<br />

of cantilevered piezoelectric vibration energy harvesters,”<br />

Journal of Intelligent Material Systems and Structures, 19<br />

(2008) 1311-1325<br />

[13] T. K. Caughey, and M. E. J. O’Kelly, “Classical normal<br />

modes in damped linear dynamic systems,” Journal of<br />

Applied Mechanics, 32 (1965) 583–588.<br />

80

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!