28.11.2014 Views

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

Online proceedings - EDA Publishing Association

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VI. CONCLUSION<br />

This paper discusses how to increase adhesive density of<br />

linkers and viruses on a sensor surface in microfluidic channels.<br />

We designed a flow movement in a microenvironment to<br />

control the adhesive density of MUA and TYMV. Adhesive<br />

density of a linker (MUA) and viruses (TYMV) with specific<br />

fluorescent dyes were measured by a confocal microscope. Our<br />

results show that TYMV and MUA layers disperse randomly<br />

by the dipping method. Infusion rate, flow rate, and vortex flow<br />

affect the adhesive density of the recognition layer on a sensor<br />

surface. An adhesion density of MUA was 86 % when the<br />

infusion rate was 1500ml/hr in the microenvironment. This was<br />

2.57 times larger than the density detected by the dipping<br />

method. The virus, TYMV, could attain 70 % of adhesion<br />

densities when the infusion rate was 1500ml/hr in the<br />

microenvironment. The adhesion density was 16.5 times larger<br />

than the density detected by the dipping method. The duration<br />

of the experiment by vortex flow was 2.3×10 –4 times less than<br />

the duration by the dipping method. An interesting<br />

phenomenon was observed in that the fluorescence intensity<br />

distribution was similar to the vorticity distribution of<br />

simulation. Experimental results show that vortex flow method<br />

is able to increases the adhesive density of antigen-antibody<br />

reaction and it contributes to rapid and real-time detection.<br />

VII. ACKNOWLEDGMENT<br />

This paper is supported by the National Science Council,<br />

Taiwan.<br />

X<br />

Intensity (A.u.)<br />

in<br />

Y<br />

11-13 <br />

May, 2011, Aix-en-Provence, France<br />

1200<br />

out<br />

Fig. 8 TYMV by vortex flow (best viewed in color)<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 500 1000 1500 2000 2500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Y position (m)<br />

Fig. 9 Vorticity and fluorescence intensity by vortex flow<br />

Vorticity (1/s)<br />

Average fluorescent intensity (A.U.)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

600 min<br />

Dipping method<br />

1.7 min<br />

Vortex flow<br />

100<br />

Fig. 10 Average fluorescent intensity and coverage by dipping method<br />

and vortex flow<br />

REFERENCES<br />

[1] E. Engvall, P. Perlman, Enzyme-linked immunosorbent<br />

assay (ELISA). quantitative assay of immunoglobulin G,<br />

Immunochemistry, 8 (1971) 871–874<br />

[2] R. M. Lequin, Enzyme immunoassay (EIA)/enzyme-linked<br />

immunosorbent assay (ELISA), Clin. Chem., 51 (2005)<br />

2415–2418 (2005)<br />

[3] W. N. Burnette, Western blotting: electrophoretic transfer<br />

of proteins from sodium dodecyl sulfate - polyacrylamide gels<br />

to unmodified nitrocellulose and radiographic detection with<br />

antibody and radioiodinated protein A, Anal. Biochem., 112<br />

(1981) 195–203 (1981)<br />

[4] H. Towbin, T. Staehelin, J. Gordon, Electrophoretic transfer<br />

of proteins from polyacrylamide gels to nitrocellulose sheets:<br />

procedure and some applications, P. Natl. Acad. Sci. U.S.A., 76<br />

(1979) 4350–4354<br />

[5] D. B. Holt, P. R. Gauger, A. W. Kusterbeck, F. S. Ligler,<br />

Fabrication of a capillary immunosensor in polymethyl<br />

methacrylate, Biosens. and Bioelectron., 17 (2002) 95–103<br />

[6] I. S. Park, N. Kim, Thiolated Salmonella antibody<br />

immobilization onto the gold surface of piezoelectric quartz<br />

crystal, Biosens. and Bioelectron., 13 (1998) 1091–1097<br />

[7] C. W. Huang, G. B. Lee, A microfluidic system for<br />

automatic cell culture, J. Micromech. Microeng., 17 (2007)<br />

1266–1274<br />

[8] B. Steinhaus, M. L. Garcia, A. Q. Shen, L. T. Angenent, A<br />

portable anaerobic microbioreactor reveals optimum growth<br />

conditions for the methanogen, Appl. Environ. Microb., 73<br />

(2007) 1653–1658<br />

[9] Y. Gao, F. Y.H. Lin, G. Hu, P. M. Sherman, D. Li,<br />

Development of a novel electrokinetically driven microfluidic<br />

immunoassay for the detection of Helicobacter pylori, Anal.<br />

Chim. Acta., 543 (2005) 109–116<br />

[10] P. Tabeling, Introduction to Microfluidics, Oxford<br />

University Press, New York, 2005, pp95-97<br />

[11] H. Bruus, Theoretical Microfluidics, Oxford University<br />

Press, New York, 2008, pp79-81<br />

[12] K. L. Bransom, J.J. Weiland, C.H. Tasi, T.W. Dreher,<br />

Coding density of the Turnip Yellow Mosaic Virus genome:<br />

roles of the overlapping coat protein and p206-readthrough<br />

coding regions, Virology 206 (1995) 403–412<br />

[13] I. N. Serdyuk, N. R. Zaccai, J. Zaccai, Methods in<br />

Molecular Biophysics Cambridge University Press, New York,<br />

2007, pp318-335<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Average fluorescent coverage (%)<br />

371

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!