28.01.2015 Views

Stars as Laboratories for Fundamental Physics - MPP Theory Group

Stars as Laboratories for Fundamental Physics - MPP Theory Group

Stars as Laboratories for Fundamental Physics - MPP Theory Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Subject Index 655<br />

multiple scattering<br />

Cherenkov detector 366<br />

nuclear medium 135, 143–51, 511f<br />

MUNU experiment 276<br />

muon decay 263<br />

N<br />

Nambu-Goldstone bosons 165f, 250,<br />

529–31, 559f<br />

NESTOR xvi, 558<br />

neutral current<br />

collision term in neutrino oscillations<br />

323f<br />

coupling constants 584<br />

flavor-changing 263f, 303, 326<br />

Hamiltonian 95, 119, 136, 320, 531,<br />

584<br />

neutrality of matter 565<br />

neutrino absorption → neutrino opacity<br />

neutrino charge: electric 227f, 232–36,<br />

240, 499, 522f, 564–67<br />

neutrino cooling<br />

→ supernova core<br />

red-giant core 83–85<br />

white dwarfs 47–50<br />

neutrino coupling constants: standard<br />

583f<br />

neutrino cross section<br />

electrons 365f, 416<br />

protons and nuclei 416<br />

neutrino dark matter 258–60<br />

neutrino decay<br />

→ neutrino radiative decay<br />

f<strong>as</strong>t invisible 248–50, 389, 485, 559<br />

standard-model 263–67<br />

neutrino dipole moments<br />

<strong>as</strong>trophysical impact and bounds<br />

early universe 277f<br />

HB stars 82, 236<br />

neutron stars 59f<br />

red-giant core m<strong>as</strong>s 86f, 236<br />

supernova 277, 477–79, 483, 521f<br />

white dwarfs 48–50<br />

electric vs. magnetic 265f, 268–71,<br />

273–75, 525<br />

experimental bounds<br />

→ neutrino radiative decay<br />

scattering experiments 267, 275f<br />

neutrino dipole moments (cont’d)<br />

interaction structure 228, 265, 268–71<br />

medium induced 240<br />

processes<br />

pl<strong>as</strong>mon decay 229, 232–36, 274<br />

scattering 272f<br />

summary 272–75<br />

radiative decay<br />

→ neutrino radiative decay<br />

summary of limits 275–79<br />

theoretical prediction<br />

Dirac vs. Majorana 265, 271, 451<br />

left-right symmetric model 268<br />

standard-model 265f<br />

structure of interaction 265, 268–71<br />

neutrino dispersion<br />

Cherenkov effect 238f<br />

deflection 247f<br />

density-matrix treatment 321f<br />

general theory 241–47<br />

inhomogeneous medium 442f<br />

neutrino background 321f, 432f,<br />

440–42<br />

nonisotropic medium 321, 432f,<br />

440–42<br />

off-diagonal refractive index 322<br />

relation <strong>for</strong> m<strong>as</strong>sive neutrinos in<br />

media 295f<br />

spin-flip scattering 162<br />

neutrino emission: standard<br />

→ solar neutrino flux, supernova core<br />

<strong>as</strong>trophysical impact<br />

red-giant core m<strong>as</strong>s 83f<br />

red supergiant 2<br />

white-dwarf cooling 47–50<br />

historical perspective 1f<br />

numerical rates 585–90<br />

specific processes<br />

bremsstrahlung (electronic) 105-7,<br />

588<br />

bremsstrahlung (nucleonic) 127–30,<br />

157, 159<br />

Compton (photoneutrino) 95f, 98,<br />

586f<br />

free-bound transition 100f<br />

pair annihilation 99f, 586f<br />

pl<strong>as</strong>ma 585f

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!