28.01.2015 Views

Stars as Laboratories for Fundamental Physics - MPP Theory Group

Stars as Laboratories for Fundamental Physics - MPP Theory Group

Stars as Laboratories for Fundamental Physics - MPP Theory Group

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

656 Subject Index<br />

neutrino <strong>for</strong>m factor: electromagnetic<br />

→ neutrino dipole moment<br />

anapole moment 268–70<br />

charge 227f, 232–36, 240, 268, 564–67<br />

charge radius 269f, 523<br />

general theory 267–72<br />

in pl<strong>as</strong>ma 230f, 237–41<br />

neutrino l<strong>as</strong>ing 389<br />

neutrino lightcurve → supernova core<br />

neutrino m<strong>as</strong>s<br />

bounds<br />

ββ decay 257f<br />

cosmological 258–60<br />

experimental 252, 254–58<br />

future supernovae 447f, 497<br />

SN 1987A signal dispersion 426f<br />

SN 1987A signal duration 516–19<br />

Dirac 253f, 516–19<br />

effective → neutrino dispersion<br />

inverted hierarchy 434<br />

Majorana 253f, 257–59<br />

neutrino mixing<br />

→ neutrino oscillations<br />

bounds<br />

atmospheric neutrinos 291<br />

decay experiments 456f, 461<br />

oscillation experiments 289f<br />

r-process nucleosynthesis 437–42<br />

SN 1987A γ-rays 481<br />

SN 1987A prompt burst 432–34<br />

SN 1987A signal duration 434–36<br />

supernova core: flavor conversion<br />

338<br />

decay rates and dipole moments<br />

264–67<br />

induced by<br />

flavor-changing neutral currents<br />

303<br />

gravity 555<br />

m<strong>as</strong>s matrix 262, 282<br />

neutrino opacity 132–35, 149–51, 329f,<br />

334f, 408, 514–16<br />

neutrino oscillations<br />

damping by collisions<br />

kinetic equation 327–29, 332–34<br />

simple picture 310–12<br />

spin relaxation 313<br />

time scale in SN core 335–38<br />

equations of motion 282–84<br />

neutrino oscillations (cont’d)<br />

experimental searches 289f<br />

historical introduction and overview<br />

280–82<br />

in media<br />

adiabatic limit 297–99<br />

analytic results 299–300<br />

homogeneous 296f<br />

mixing angle 294–7<br />

neutrino background in supernovae<br />

432f, 440–42<br />

oscillation length 285f, 289, 294–97<br />

primordial 322<br />

resonant<br />

analytic results 299f<br />

description 281, 298<br />

Landau-Zener approximation 300<br />

level crossing 295f, 298<br />

schematic model <strong>for</strong> the Sun 301–3<br />

solution of solar neutrino problem<br />

384–86<br />

supernova core 333f<br />

supernova mantle 432–42<br />

spin-precession picture 286f, 314f<br />

supernova<br />

cooling ph<strong>as</strong>e 434–36<br />

explosion mechanism 436f<br />

overview 430f<br />

prompt burst 432–34, 496f, 498<br />

r-process nucleosynthesis 437–42<br />

Sun<br />

MSW solutions 384–86, 434f<br />

schematic model of MSW effect<br />

301–3<br />

vacuum solution 381–84<br />

survival probability<br />

general expression 284–86<br />

with energy distribution 288<br />

with source distribution 287f<br />

temporal vs. spatial 283f<br />

three-flavor 284f<br />

two-flavor 284–88<br />

neutrino-photon scattering 245f<br />

neutrino radiative decay<br />

→ neutrino dipole moment, neutrino<br />

two-photon coupling

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!