10.07.2015 Views

etude theorique et experimentale du transport electronique ... - Ief

etude theorique et experimentale du transport electronique ... - Ief

etude theorique et experimentale du transport electronique ... - Ief

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapitre II : Les différents niveaux de la modélisation[36] “Two dimensional Energy Dependent Models for the Simulation of the Substrate Current inSubmicron MOSFET”, V. Agostinelli, and al, IEEE Trans. Electron Devices, vol. 40, n°10, 1994,pp: 17784-1795.[37] “Simulation of hot electron oxide tunnelling current based on a non Maxwellian electron energydistribution function”, H. Gosina, T. Grasser, C. Heitzinger and S. Selberherr, Journal of AppliedPhysics, vol. 92, n°10, 2002, pp: 6019-6027.[38] “The hot electron problem in small semicon<strong>du</strong>ctor devices, W. Hänsch and M. Miura-Mattausch,J. Appl. Phys., vol. 60,n°2, 1993, pp: 650-656.[39] “Macroscopic Physics of silicon inversion layer “, M.G. Ancona and H.F. Tiersten, Phy. Rev. B,vol. 35, 1987, pp: 7959-7965.[40] “Bondary conditions for open quantum systems driven far from equilibrium”, W.R. Frensley, Rev.Modern Phys., vol.62, 1990, 1990.[41] “Wigner phase space m<strong>et</strong>hod: analysis for semi classical applications”, E.J. Heller, J. of Chem.Phys., vol. 65, 1976, pp: 1289-1298.[42] “Semicon<strong>du</strong>ctor device simulation using quantum <strong>transport</strong> theory”, PhD, Cornell University,1990.[43] “Simulation <strong>du</strong> courant tunnel source drain par la méthode Density gradient”, M. Jaud, stage 2003,CEA LETI.[44] “Density gradient Analysis of MOS Tunnelling”, M.G. Ancona, Z. Yu, R. Dutton, P.J. VanVoorde, M.Cao and D. Vook, IEEE Trans. Electron Devices, vol. 47, n°12, 2000, pp:2310-2319[45] “Density-gradient analysis of MOS tunnelling” Ancona, M.G.; Yu, Z.; Dutton, R.W.; VandeVoorde, P.J.; Cao, M.; Vook, D.; Electron Devices, IEEE Transactions on Volume 47, Issue12, 2000 pp: 2310 – 2319.[46] “Alternative Approach to the solution of Added Carrier Transport Problems in Semicon<strong>du</strong>ctor”,J.P. McKelvey, R.L. Longini and T. P. Brody, Physical Review, vol.123, n°1, 1961, pp: 51-57.[47] “On Density Gradient Modeling of Tunneling Through Insulator”, T. Hohr, A. Schenk, A.W<strong>et</strong>testein and W. Fichtner, IECE Trans Elec., vol. E86, n°3, 2003,pp:379-384.[48] “Device simulation requirements for sub-30nm CMOS”, Gilberto Curatola, Seminaire ST Crolles,24/02/2005.[49] “Fully 2D Quantum mechanical simulation of Nanoscale MOSFETs”, A. Pirovano, A.L. Lacaitaand A.S. Spinelli., SISPAD 2001, Springer WienNewYok, pp: 94-97.[50] “Diffusion and Drift of Minority Carrier in Semicon<strong>du</strong>ctors for comparable Capture and ScatteringMean Free Path”, W. Shoclkey, Physical Review, vol.125, n°5, 1962, pp: 1570-1576.[51] “Electronic Transport in Mesoscopic Systems”, S. Datta, Cambridge University Press, 1995.[52] “Formulation of the Boltzmann equation in term of scattering matrices”, Alam, M.A. St<strong>et</strong>tler, M.S.Lundstrom, Solid-State Electronics, vol36, 1993, pp: 263- 271.[53] “A Scattering matrix approach to device simulation”, Solid-State Electron., A. Das and M.S.Lundstrom, vol33, 1990, pp: 1299-1307.[54] “Self consistent scattering matrix calculation of the distribution function in semicon<strong>du</strong>ctordevice”, M.A. St<strong>et</strong>tler and M. Lundstrom, Appl. Phys. L<strong>et</strong>t., vol. 60, 1992, pp: 2908-2910.[55] “Physics and Simulation of Quasi-Ballistic Transport in Nanoscale Transistors”, J.H. Rhew, Ph.D.thesis, 2003.Disponible sur http://falcon.ecn.pur<strong>du</strong>e.e<strong>du</strong>:8080/publications/PhD_thesis_JHR_2003.- 78 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!