16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

J.-C. Chatard. Sa<strong>in</strong>t-Etienne, Université de Sa<strong>in</strong>t-Etienne: 457-462.<br />

Jahnig, W. (1987). Grundlegende strukturelle Betrachtungen. Sport<br />

Schwimmen. E. Schramm. Berl<strong>in</strong>, Sportverlag Berl<strong>in</strong>: 74-86.<br />

Kenndy, P., Brown, P., Chegarlur, S. N., & Nelson, R. C. (1990).<br />

Analysis of male <strong>and</strong> female Olympic swimmers <strong>in</strong> the 100 m<br />

events. International Journal of sport <strong>Biomechanics</strong>, 6, 187-<br />

197.<br />

Maglischo, E. W. (1993). Swimm<strong>in</strong>g Even Faster. Mounta<strong>in</strong><br />

View, CA, Mayfield Publish<strong>in</strong>g Company.<br />

Nomura, T. (2006). Estimation of the lap-time of 200m freestyle<br />

from age <strong>and</strong> the event time. Revista portuguesa de ciências do<br />

desporto. Vol. 6, Supl. 2. (pp. 239-241).<br />

Pai, Y. C., Hay, J. G., & Wilson, B. D. (1984). Strok<strong>in</strong>g techniques<br />

of elite swimmers. Journal of Sports Science, 2, 225-<br />

239.<br />

Sánchez, J. A. (1999). Análisis de la actividad competitiva en<br />

natación: diferencias en función de la longitud del vaso, el<br />

nivel de ejecución, el sexo, el estilo y la distancia de prueba.<br />

Deparatamento de personalidad, evaluación y tratamiento<br />

psicológico. Tesis doctoral. Granada, Universidad de Granada.<br />

Taylor, S., Maclaren, D., et al. (2003). The effects of age, maturation<br />

<strong>and</strong> growth on tethered swimm<strong>in</strong>g performance. <strong>Biomechanics</strong><br />

<strong>and</strong> medic<strong>in</strong>e <strong>in</strong> swimm<strong>in</strong>g IX. J.-C. Chatard. Sa<strong>in</strong>t-<br />

Etiene, Université de Sa<strong>in</strong>t-Etiene: 185-190.<br />

Tella, V. (1998). Modificaciones de Variables C<strong>in</strong>emáticas y<br />

Antropométricas en Nadadores Infantiles y Juniors. Tesis doctoral,<br />

Valencia.<br />

Vorontsov, A. <strong>and</strong> B<strong>in</strong>evsky, D. (2003). Swimm<strong>in</strong>g speed, stroke<br />

rate <strong>and</strong> stroke length dur<strong>in</strong>g marimal 100 m freestyle of boys<br />

11-16 years of age. <strong>Biomechanics</strong> <strong>and</strong> medic<strong>in</strong>e <strong>in</strong> swimm<strong>in</strong>g<br />

IX. J.-C. Chatard. Sa<strong>in</strong>t- Etienne, Université de Sa<strong>in</strong>t-Etienne:<br />

195-200.<br />

AcKnoWledGeMents<br />

Esther Morales would like to thank the University of Granada for the<br />

grant that enabled her to carry out this research. She would also like to<br />

thank the Physical Education <strong>and</strong> Sports Department <strong>and</strong> the Research<br />

Group “CTS-527: Physical Activity <strong>and</strong> Sports <strong>in</strong> Aquatic Environment”<br />

of the University of Granada for the use of equipment <strong>and</strong> help<br />

<strong>in</strong> prepar<strong>in</strong>g this paper <strong>and</strong> the research on which it is based.<br />

132<br />

Advanced Biomechanical Simulations <strong>in</strong> Swimm<strong>in</strong>g<br />

Enabled by Extensions of Swimm<strong>in</strong>g Human<br />

Simulation Model “SWUM”<br />

nakashima, M. 1 , Kiuchi, h. 1 , Maeda, s. 1 , Kamiya, s. 1 , nakajima,<br />

K. 1 , takagi, h. 2<br />

1 Tokyo Institute of Technology, Tokyo, Japan<br />

2 University of Tsukuba, Tsukuba, Japan<br />

S<strong>in</strong>ce the authors presented the simulation model “SWUM” <strong>and</strong> its<br />

implementation software “Swumsuit” <strong>in</strong> BMS-2006, major extensions<br />

have been successively made on SWUM, such as optimiz<strong>in</strong>g calculation,<br />

musculoskeletal simulation, <strong>and</strong> multi agent/object simulation, <strong>in</strong> order<br />

to extend its capability of analysis. In this paper, these three extensions<br />

are expla<strong>in</strong>ed <strong>and</strong> the various recent results from their implementation<br />

presented. The usefulness of the extensions was confirmed s<strong>in</strong>ce many<br />

reasonable results were obta<strong>in</strong>ed.<br />

Key words: Biomechanical Simulation, Optimization, Musculoskeletal<br />

model, SWUM<br />

IntroductIon<br />

There are many biomechanical problems to be solved <strong>in</strong> human swimm<strong>in</strong>g.<br />

In order to discuss such problems quantitatively, numerical<br />

simulation is becom<strong>in</strong>g a powerful <strong>and</strong> useful tool. The authors have<br />

developed a simulation model, “SWUM,” (SWimm<strong>in</strong>g hUman Model)<br />

(Nakashima et al., 2007b) <strong>and</strong> a free software, “Swumsuit,” as the implementation<br />

of SWUM (Nakashima, 2005, 2006). By SWUM, it is possible<br />

to analyze the dynamics of the whole swimmer’s body with a short<br />

computation time due to model<strong>in</strong>g the fluid force act<strong>in</strong>g on the swimmer.<br />

S<strong>in</strong>ce it was reported <strong>in</strong> the last symposium (Nakashima 2006),<br />

major extensions have been successively made on SWUM, such as optimiz<strong>in</strong>g<br />

calculation, musculoskeletal simulation, <strong>and</strong> multi agent/object<br />

simulation, <strong>in</strong> order to extend the capability of analysis. In this paper,<br />

these extensions are expla<strong>in</strong>ed <strong>and</strong> the various recent results by them are<br />

presented <strong>in</strong> order to exam<strong>in</strong>e their usefulness.<br />

Methods<br />

All analyses <strong>in</strong> this paper were carried out us<strong>in</strong>g SWUM. It was designed<br />

to solve the six degrees-of-freedom absolute movement of the whole<br />

swimmer’s body as a s<strong>in</strong>gle rigid body by the time <strong>in</strong>tegration method, us<strong>in</strong>g<br />

the <strong>in</strong>puts of the swimmer’s body geometry <strong>and</strong> relative jo<strong>in</strong>t motion.<br />

The swimm<strong>in</strong>g speed, roll, pitch <strong>and</strong> yaw motions, propulsive efficiency,<br />

jo<strong>in</strong>t torques <strong>and</strong> so on, are computed as the output data. The swimmer’s<br />

body is represented by a series of 21 rigid body segments. Each body segment<br />

is represented by a truncated elliptic cone. The unsteady fluid force<br />

<strong>and</strong> gravitational force are taken <strong>in</strong>to account as the external forces act<strong>in</strong>g<br />

on the whole body. The unsteady fluid force is assumed to be the sum<br />

of the <strong>in</strong>ertial force due to the added mass of the fluid, normal <strong>and</strong> tangential<br />

drag forces <strong>and</strong> buoyancy. These components are also assumed to<br />

be computable, without solv<strong>in</strong>g the flow, from the local position, velocity,<br />

acceleration, direction, angular velocity <strong>and</strong> angular acceleration for each<br />

part of the swimmer’s body at each time step. The coefficients <strong>in</strong> this fluid<br />

force model were identified us<strong>in</strong>g the results of an experiment with a limb<br />

model <strong>and</strong> measurements of the drag act<strong>in</strong>g on swimmers tak<strong>in</strong>g a glide<br />

position <strong>in</strong> the previous studies (Nakashima et al., 2007b). For the simulation<br />

example of six beat crawl stroke <strong>in</strong> the previous study, the swimm<strong>in</strong>g<br />

speed of the simulation became a reasonable value, <strong>in</strong>dicat<strong>in</strong>g the validity<br />

of the simulation model. With respect to the six beat crawl stroke, the authors<br />

have already analyzed contributions of each fluid force component<br />

<strong>and</strong> of each body part to the thrust, effect of the flutter kick, estimation of<br />

the active drag, roll motion, <strong>and</strong> propulsive efficiency (Nakashima, 2007a).<br />

Analyses of the other three strokes <strong>and</strong> comparison among four strokes

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!