16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

a 30-m<strong>in</strong> test by the CSS 10 <strong>in</strong> adult male swimmers (18.6 ± 1.9 years).<br />

Studies also found that the speed of a 20-m<strong>in</strong> test <strong>in</strong> adolescents or<br />

a 2000-m test <strong>in</strong> adults was similar to the speed at Lactate threshold<br />

(Greco et al., 2003; Matsunami et al., 1999). However, further studies<br />

are needed to check whether or not it would be erroneous to use a<br />

s<strong>in</strong>gle correction factor to predict the velocity over a 30-m<strong>in</strong> test or V 1500<br />

through CSS 10 both <strong>in</strong> adolescence <strong>and</strong> adulthood, as these differences<br />

seem to vary dur<strong>in</strong>g the development of swimmers (Dipla et al., 2009).<br />

conclusIon<br />

Css 1 (50-100m) was the model that most overestimated css 10 (200-<br />

400m). The lowest error <strong>in</strong> the estimation of css 10 was observed with<br />

css 3 (-0.5%) <strong>and</strong> css 7 (0.8%). Css 10 overestimated v 1500 by +3.5%. Css 10<br />

(200-400 m) was higher than v 1500 (+3.5%) with performances over<br />

this distance rang<strong>in</strong>g from 19.5 to 22-m<strong>in</strong> (1231 ± 88 s) <strong>in</strong> young male<br />

swimmers. Hav<strong>in</strong>g access to <strong>in</strong>formation of possible differences between<br />

css 10 <strong>and</strong> other comb<strong>in</strong>ations for predict<strong>in</strong>g css seems important when<br />

for some reason the coach needs to calculate css with other distances. It<br />

might suggest studies to measure the level of agreement between css 10 vs<br />

the other comb<strong>in</strong>ations <strong>and</strong> between css 10 vs v 1500 to check whether this<br />

level of agreement will be ma<strong>in</strong>ta<strong>in</strong>ed until adulthood.<br />

reFerences<br />

Bishop, D., Jenk<strong>in</strong>s, D.G. & Howard, A. (1998). The critical power function<br />

is dependent on the duration of the predictive exercise tests chosen.<br />

Int J Sports Med 19, 125–129.<br />

Bl<strong>and</strong>, J.M. & Altman, D.G. (1986). Statistical methods for assess<strong>in</strong>g<br />

agreement between two methods of cl<strong>in</strong>ical measurement. Lancet 8,<br />

307-310.<br />

Dekerle, J., Vanhatalo, A. & Burnley M. (2008). Determ<strong>in</strong>ation of critical<br />

power from a s<strong>in</strong>gle test. Science & Sports 23(5), 231-8.<br />

Dekerle, J., Sidney, M., Hespel, J.M. & Pelayo, P. (2002). Validity <strong>and</strong><br />

reliability of critical speed, critical stroke rate <strong>and</strong> anaerobic capacity<br />

<strong>in</strong> relation to front crawl swimm<strong>in</strong>g performances. Int J Sports Med,<br />

23, 93-8.<br />

Dipla, K., Tsir<strong>in</strong>i, T., Zafeiridis, A., Manou, V., Dalamitros, A., Kellis, E.<br />

& Kellis, S. (2009). Fatigue resistence dur<strong>in</strong>g high-<strong>in</strong>tensity <strong>in</strong>termittent<br />

exercise from childhood to adulthood <strong>in</strong> males <strong>and</strong> females. Eur<br />

J Appl Physiol 106, 645-653.<br />

Ettema, J.H. (1966). Limits of human performance <strong>and</strong> energy production.<br />

Int Z Ang Physiol E<strong>in</strong>schl Arbeitphysiol. 22, 45-54.<br />

Gast<strong>in</strong>, P.B. (2001). Energy system <strong>in</strong>teraction <strong>and</strong> relative contribution<br />

dur<strong>in</strong>g maximal exercise. Sport Med 31 (10), 725 – 741.<br />

Greco, C.C., Denadai, B.S., Pellegr<strong>in</strong>otti, I.L., Freitas, A.D.B. & Gomide<br />

E. (2003). Anaerobic threshold <strong>and</strong> critical speed determ<strong>in</strong>ed with<br />

different distances <strong>in</strong> swimmers aged 10 to 15 years: relationship with<br />

the performance <strong>and</strong> blood lactate response dur<strong>in</strong>g endurance tests.<br />

Rev. Bras. Med. Esporte; vol. 9 nº 1 - jan/dez pg 02- 08.<br />

Heck, H., Mader, A. & Hess, G. (1985). Justification of the 4 mmol/L<br />

Lactate Threshold. Int J Sports Med 6, 117-30.<br />

Matsunami, M., Taguchi, M., Taimura, A., Suyama, M., Suga, M. &<br />

Shimonagata S., et al. (1999). Comparison of swimm<strong>in</strong>g speed <strong>and</strong><br />

exercise <strong>in</strong>tensity dur<strong>in</strong>g non-<strong>in</strong>vasive test <strong>and</strong> <strong>in</strong>vasive test <strong>in</strong> competitive<br />

swimm<strong>in</strong>g. In: Kesk<strong>in</strong>en K, Komi PV, Holl<strong>and</strong>er AP, editors.<br />

<strong>Biomechanics</strong> <strong>and</strong> medic<strong>in</strong>e <strong>in</strong> swimm<strong>in</strong>g VIII. Jyväskylä: Gummerus<br />

Pr<strong>in</strong>t<strong>in</strong>g; p. 245-8.<br />

V<strong>and</strong>ewalle, H., Kapitaniak. B., Grun. S., Raveneau. S. & Monod H.<br />

(1989). Comparison between a 30-s all-out test <strong>and</strong> a time-work test<br />

on a cycle ergometer. Eur J Appl Physiol Occup Physiol. 58(4), 375.<br />

Vilas-Boas J. & Lamares J.P. (1997). Velocidade Crítica: Critério para a<br />

Avaliação do Nadador e para a Def<strong>in</strong>ição de Objetivos. XX Congresso<br />

Técnico Científico da Associação Portuguesa dos Técnicos de Natação. 25 a<br />

27 Abril – Setúbal-Portugal.<br />

Wakayoshi, K., Yoshida, T., Udo, M., Harada, T., Morianti, T., Mutoh, Y.<br />

& Miyashita, M. (1993). Does critical swimm<strong>in</strong>g velocity represent<br />

chaPter4.tra<strong>in</strong><strong>in</strong>g<strong>and</strong>Performance<br />

exercise <strong>in</strong>tensity at maximal lactate steady state? Eur J Appl Physiol<br />

66, 90-5.<br />

Wakayoshi, K.,Yoshida, T., Kasai, T., Moritani, T., Mutoh, Y. &Miyashita<br />

M. (1992c). Validity of critical velocity as swimm<strong>in</strong>g fatigue<br />

threshold <strong>in</strong> the competitive swimmer. Annals of Physiological Anthropology<br />

11, 301-307.<br />

Wakayoshi, K., Yoshida, T., Udo, M., Kasai, T., Moritani, T., Mutoh,<br />

Y. Miyashita, M. (1992b). A simple method for determ<strong>in</strong><strong>in</strong>g critical<br />

speed as swimm<strong>in</strong>g fatigue threshold <strong>in</strong> competitive swimm<strong>in</strong>g.<br />

International Journal of Sports <strong>Medic<strong>in</strong>e</strong> 13, 367-371.<br />

Wilkie, D.R. (1980). Equations describ<strong>in</strong>g power <strong>in</strong>put by humans as<br />

a function of duration of exercise. In: Cerretelli P, Whipp B (eds)<br />

Exercise bioenergetics <strong>and</strong> gas exchange. Elsevier North Holl<strong>and</strong>s, Amsterdam,<br />

pp 75-80.<br />

Wright, B. & Smith, D.J. (1994). A protocol for the determ<strong>in</strong>ation of<br />

critical speed as an <strong>in</strong>dex of swimm<strong>in</strong>g endurance performance. In:<br />

Miyashita M, Mutoh Y, Richardson AB, eds. Med Sport Science 39,<br />

55-9.<br />

AcKnoWledGeMent<br />

The authors would like to thank Cristiano Klaser, Ricardo Peterson Silveira<br />

<strong>and</strong> Rodrigo B<strong>in</strong>i for their <strong>in</strong>volvement <strong>in</strong> this study.<br />

309

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!