16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

m<strong>in</strong>utes, thereby determ<strong>in</strong><strong>in</strong>g the maximum lactic acid concentration at<br />

an <strong>in</strong>tensity whose ma<strong>in</strong> source of energy was supplied by the anaerobic<br />

lactate as well as the aerobic system (Zamparo et al., 2000; Capelli et al.,<br />

1998). In this way, the swimmers did the R2 over a distance of 150 to 200<br />

meters, or 300 to 400 meters, accord<strong>in</strong>g to their swimm<strong>in</strong>g speed.<br />

In the same way, the duration of 60 seconds was selected for every<br />

swimmer <strong>in</strong> R1 to swim at maximum effort <strong>and</strong> so determ<strong>in</strong>e the maximum<br />

LA concentration at an <strong>in</strong>tensity whose ma<strong>in</strong> source was supplied<br />

by the anaerobic lactate system (Zamparo et al., 2000; Capelli et al., 1998).<br />

Thus the swimmers carried out R1 over a distance of 50 to 100 meters<br />

accord<strong>in</strong>g to their swimm<strong>in</strong>g speed.<br />

This decision meant that there were no significant differences<br />

(p>0.05) <strong>in</strong> the swimm<strong>in</strong>g time between groups <strong>in</strong> R2 (G1=212.82” ±<br />

57.96; G2=248.02” ± 66.60; G3= 208.95” ± 67.33) y en R1 (G1=76.76” ±<br />

16.61; G2=75.90” ± 21.02; G3= 67.33” ± 9.02)<br />

Roi & Cerriza (1992) studied the difference between disabled <strong>and</strong><br />

non-disabled swimmers over the same distance for both groups (50 meters).<br />

The results obta<strong>in</strong>ed do not account for the fact that disabled swimmers<br />

required a swimm<strong>in</strong>g time of approximately 129% of the non disabled<br />

(26.66” vs 61.29”). One of the contributions of our study is to show<br />

the necessity of equat<strong>in</strong>g the swimm<strong>in</strong>g times <strong>and</strong> <strong>in</strong>tensity, as opposed<br />

to select<strong>in</strong>g the same distance, when compar<strong>in</strong>g the performance between<br />

swimmers with <strong>and</strong> without disabilities.<br />

The swimmers with disabilities showed similar values (G2) or lower<br />

(G1) to the swimmers without disability (G3). However, Pelayo et al.<br />

(1995) present higher LA concentration values <strong>in</strong> swimmers with disabilities<br />

than the swimmers without disabilities on <strong>in</strong>tensities related to<br />

the maximum aerobic speed (similar to our R2), evidenc<strong>in</strong>g the difference<br />

<strong>in</strong> tra<strong>in</strong><strong>in</strong>g programs for the swimmers with <strong>and</strong> without disabilities.<br />

If the LA accumulation depends on the musculature engaged dur<strong>in</strong>g<br />

the effort (Ohkuma & Itoh, 1992), it seems reasonable to th<strong>in</strong>k that the<br />

characteristics of the different disabilities of the swimmers from lower<br />

classes, would limit the neuromuscular activation relative to the swimmers<br />

from higher classes <strong>and</strong> swimmers without disabilities. For example G1<br />

was formed by 4 cerebral palsy <strong>and</strong> 3 paraplegic swimmers.<br />

Another aspect to analyze is the differences <strong>in</strong> LA between R1 <strong>and</strong> R2<br />

<strong>in</strong> the different groups. Although the results obta<strong>in</strong>ed do not show differences<br />

between repetitions, the analysis for each swimmer shows whether<br />

the maximum LA concentration can be found <strong>in</strong> R1 or <strong>in</strong> R2 (Table 4).<br />

Table 4. Individual blood lactate levels for groups <strong>and</strong> conditions.<br />

Group 1 (n=10) Group 2 (n=9) Group 3 (n=10)<br />

R1 vs R2 (mmol/LA) R1 vs R2 (mmol/LA) R1 vs R2 (mmol/LA)<br />

7.3 6.8 11.3 9.2 12.2 10.8<br />

8.9 6.9 8.9 9.9 11 11.1<br />

11 7.6 11 8.4 12.7 7<br />

8.6 5.7 14.2 12.1 10.7 11.7<br />

12 9.2 14.2 11.7 10.7 11.8<br />

12 7 10.4 8.1 13.4 10.1<br />

9 9.7 10.8 10 14.1 12<br />

6.4 3.4 13.6 9 14.7 10<br />

14 12 13 9.6 11.7 11.3<br />

6.4 5.2 - - 10.1 9.7<br />

As Table 4 shows, four swimmers obta<strong>in</strong>ed similar values between R1 <strong>and</strong><br />

R2 (≤0.5 mmol/LA), three swimmers obta<strong>in</strong>ed greater values <strong>in</strong> R2 (>0.5<br />

mmol/LA), while the rest of the swimmers obta<strong>in</strong>ed greater values <strong>in</strong> R1<br />

(>0.5 mmol/LA).<br />

The LA concentration <strong>in</strong> aerobic-anaerobic <strong>in</strong>tensities can vary as a<br />

function of the tra<strong>in</strong><strong>in</strong>g carried out on the aerobic or anaerobic system, as<br />

<strong>in</strong>dicated <strong>in</strong> the latest scientific results (Kirsten et al., 2008). Thus the concentration<br />

of LA <strong>in</strong> R1 with respect to R2 could be due to the physiological<br />

adaptations produced by the type of tra<strong>in</strong><strong>in</strong>g; whether aerobic or anaerobic.<br />

chaPter6.medic<strong>in</strong>e<strong>and</strong>watersafety<br />

conclusIon<br />

To conclude, at anaerobic <strong>and</strong> aerobic-anaerobic <strong>in</strong>tensities, the swimmers<br />

of the lower classes have a lower LA accumulation than the swimmers<br />

from higher classes <strong>and</strong> the swimmers without any functional impairment.<br />

However, the swimmers from the higher classes have a similar LA<br />

accumulation to those swimmers without functional disability.<br />

reFerences<br />

Avlonitou, E. (1996). Maximal lactate values follow<strong>in</strong>g competitive performance<br />

vary<strong>in</strong>g accord<strong>in</strong>g to age, sex <strong>and</strong> swimm<strong>in</strong>g style. J Sports<br />

Med Phys Fitness, 36, 24-30.<br />

Capelli C, Pendergast DR, Term<strong>in</strong> B. (1998). Energetics of swimm<strong>in</strong>g at<br />

maximal speeds <strong>in</strong> humans. Eur J Appl Physiol, 78, 385-93.<br />

Ch<strong>in</strong> T, Sawamura S, Fujita H, Nakajima S, Ojima I, Oyabu H, Nagakura<br />

Y, Otsuka H, Nakagawa A. (2001). Effect of endurance tra<strong>in</strong><strong>in</strong>g program<br />

based on anaerobic threshold (AT) for lower limb amputees. J<br />

Rehabil Res Dev 38, 7-11.<br />

De Aymerich, J. (2007). Paralympic swimmers tra<strong>in</strong><strong>in</strong>g: Case study.<br />

“Swimm<strong>in</strong>g Science I”. Editorial Universidad de Granada. Granada<br />

ISBN: 978-84-338-4789-8<br />

Denadai, S.B. (2002). Determ<strong>in</strong>ação do limiar anaeróbio em jogadores<br />

de futebol com paralisia cerebral e nadadores participantes da Paraolimpíada<br />

de Sidney 2000. Rev Bras Med Esporte, Vol. 8, Nº 3 – May/<br />

Jun, 117-121<br />

Esau, SP & Mac<strong>in</strong>tosh, BR. (2006). Post-race lactate levels <strong>and</strong> classification<br />

<strong>in</strong>ternational level physically disabled swimmers. VISTA Conference<br />

2006 Congress IPC: Classification <strong>and</strong> Solutions for the future. Boon:<br />

Federal M<strong>in</strong>istry of Interior<br />

Foster, C., Fitzgerald, D.J., Spatz, P. (1999). Stability of the blood lactate,<br />

heart rate relationship <strong>in</strong> competitive athletes. Med Sci Sports Exerc, 31,<br />

578 – 582.<br />

Garatachea, N., Abad, O., García-Isla, F.J., Sarasa, F.J., Bresciani, G.,<br />

González-Gallego, J., De Paz, J.A. (2006). Determ<strong>in</strong>ation <strong>and</strong> validity<br />

of critical swimm<strong>in</strong>g velocity <strong>in</strong> elite physically disabled swimmers.<br />

Disability <strong>and</strong> Rehabilitation, 28(24), 1551 – 1556<br />

Hellw<strong>in</strong>g, T., Liesen, H., Mader, A., Hollmann, W. (1988). Possible means<br />

of spr<strong>in</strong>t –specific performance diagnostics <strong>and</strong> tra<strong>in</strong><strong>in</strong>g support us<strong>in</strong>g<br />

blood lactate concentrations. Abstract. International Journal oj Sports<br />

<strong>Medic<strong>in</strong>e</strong>, 9 (5), 87 – 388<br />

Burgomaster, K.A., Howarth, K.R., Phillips, S.M., Rakobowchuk, M.,<br />

MacDonald, M.J., McGee, S.L., Gibala, M.J. (2008). Similar metabolic<br />

adaptations dur<strong>in</strong>g exercise after low volume spr<strong>in</strong>t <strong>in</strong>terval <strong>and</strong><br />

traditional endurance tra<strong>in</strong><strong>in</strong>g <strong>in</strong> humans. J Physiol 586 (1), 151–160.<br />

Marliss, E. B., Kreisman, S.H., Manzon, A., Halter, J.B., Vranic, M., Nessim,<br />

S.J. (2000). Gender differences <strong>in</strong> glucoregulatory responses to<br />

<strong>in</strong>tense exercise. J. Appl. Physiol, 88, 457–466.<br />

Ohkuma, T., Itoh, H. (1992). Blood lactate, glycerol <strong>and</strong> catecholam<strong>in</strong>e<br />

<strong>in</strong> arm strokes, leg kicks <strong>and</strong> whole crawl strokes. J Sports Med Phys<br />

Fitness, 32, 32 – 38.<br />

Pelayo, P., Moretto, P., Rob<strong>in</strong>, H., Sidney, M., Gerbeaux, M.; Latour,<br />

M.G., Lavoie, J.M. (1995). Adaptation of maximal aerobic <strong>and</strong> anaerobic<br />

tests for disabled swimmers Eul J Appl Physiol, 71, 512-517<br />

Roi, G.S., Cerizza, C. (1992). Post-competition blood lactate <strong>in</strong> disabled<br />

swimmers. In: D. MacLaren, Thomas Reilly, A. Lees Eds. <strong>Biomechanics</strong><br />

<strong>and</strong> medic<strong>in</strong>e <strong>and</strong> swimm<strong>in</strong>g VI, 257–259.<br />

Telford, R.D., Hahn, A.G., Catchpole, E.A., Parker, A.R., Sweetenham,<br />

W.F. (1988). Post competition blood lactate concentration <strong>in</strong> highly<br />

ranked Australian swimmers. In: Swimm<strong>in</strong>g Science V Ungerechts,<br />

B.E.,Wilke, K., <strong>and</strong> Reischle, K., eds. Champaign, IL: Human K<strong>in</strong>etics<br />

Publishers,. pp. 277–283.<br />

Zamparo, P., Capelli, C., Cautero, M., Di N<strong>in</strong>o, A. (2000). Energy cost<br />

of front-crawl swimm<strong>in</strong>g at supra-maximal speeds <strong>and</strong> underwater<br />

torque <strong>in</strong> young swimmers. Eur J Appl Physiol, 83, 487–91.<br />

361

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!