16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

Tra<strong>in</strong><strong>in</strong>g at Real <strong>and</strong> Simulated Altitude <strong>in</strong><br />

Swimm<strong>in</strong>g: Too High Expectations?<br />

rodríguez, F.A.<br />

Institut Nacional d’Educació Física de Catalunya, Universitat de Barcelona,<br />

Spa<strong>in</strong><br />

Altitude/hypoxic tra<strong>in</strong><strong>in</strong>g is a common practice among swimmers although<br />

scientific evidence is scarce <strong>and</strong> its benefits rema<strong>in</strong> controversial.<br />

While acute hypoxia deteriorates swimm<strong>in</strong>g performance, chronic hypoxia<br />

may <strong>in</strong>duce acclimatization effects which could improve aerobic<br />

capacity <strong>and</strong> therewith performance upon return to sea level. Other potential<br />

benefits such as improved exercise economy, enhanced muscle<br />

buffer capacity <strong>and</strong> pH regulation, <strong>and</strong> improved mitochondrial function<br />

have also been postulated. This paper aims to review current methods<br />

of altitude/hypoxic tra<strong>in</strong><strong>in</strong>g <strong>and</strong> to discuss the available scientific<br />

evidence on the effects <strong>and</strong> potential benefits on sea-level swimm<strong>in</strong>g<br />

performance.<br />

Table 1. A summary of studies of altitude/hypoxic tra<strong>in</strong><strong>in</strong>g with<br />

swimmers<br />

Table 1. A summary of studies of altitude/hypoxic tra<strong>in</strong><strong>in</strong>g with swimmers<br />

30<br />

of controlled studies on AT <strong>in</strong> swimm<strong>in</strong>g <strong>and</strong> the evidence support<strong>in</strong>g<br />

most approaches <strong>in</strong> athletes (Wilber, 2004), particularly <strong>in</strong> swimmers<br />

(Truijens & Rodríguez, 2010), rema<strong>in</strong>s <strong>in</strong>conclusive. Moreover, field observations<br />

<strong>and</strong> also research studies (Chapman et al., 1998) show that<br />

AT may work for some athletes <strong>and</strong> not for others.<br />

It has been estimated that an Olympic swimmer should improve<br />

his or her performance by about 1% with<strong>in</strong> the year lead<strong>in</strong>g up to the<br />

Olympics to stay <strong>in</strong> contention for a medal (Pyne et al., 2004). A recent<br />

meta-analysis concluded that the expectable performance benefit from<br />

AT for elite athletes can be as high as 1.6% (Bonetti & Hopk<strong>in</strong>s, 2009).<br />

Perhaps a worthy strategy if a medal is just some tenths of a second away.<br />

This paper aims to provide a brief, critical overview of peer-reviewed<br />

scientific literature on AT for the improvement of swimm<strong>in</strong>g performance<br />

at sea-level.<br />

Is AltItude/hYPo<strong>XI</strong>c trAInInG Better thAn<br />

trAInInG At seA leVel?<br />

Table 1 presents a summary of AT studies from the <strong>in</strong>ternational scientific<br />

literature, with swimmers. In view of this table, the answer to the question<br />

should likely be negative. However, the heterogeneity of research<br />

designs, test<strong>in</strong>g methods, performance level of subjects <strong>and</strong> performance<br />

Key words: Altitude tra<strong>in</strong><strong>in</strong>g, hypoxia, hypoxic tra<strong>in</strong><strong>in</strong>g, <strong>in</strong>termittent<br />

<strong>in</strong>dicators make it difficult to derive sound conclusions based on the<br />

hypoxia<br />

limited evidence available. Most of our knowledge derives from studies<br />

conducted <strong>in</strong> other sports such as long distance runn<strong>in</strong>g, cycl<strong>in</strong>g, Nordic<br />

IntroductIon<br />

ski<strong>in</strong>g <strong>and</strong> orienteer<strong>in</strong>g.<br />

Altitude/hypoxic tra<strong>in</strong><strong>in</strong>g (AT) plays an important role <strong>in</strong> prepar<strong>in</strong>g<br />

swimmers <strong>Biomechanics</strong> all over <strong>and</strong> the <strong>Medic<strong>in</strong>e</strong> world. Unfortunately, <strong>in</strong> Swimm<strong>in</strong>g <strong>XI</strong> there /Chapter is a 1 remarkable Invited Lectures lack<br />

Page 46<br />

Mode of hypoxia /<br />

Strategy<br />

Natural altitude<br />

LH-TH<br />

Natural altitude<br />

LH-TH<br />

Natural altitude<br />

LH-TH<br />

IHE hypobaric<br />

Hi-Lo<br />

IHE normobaric<br />

Hi-Lo<br />

IHE hypobaric<br />

Hi-Lo<br />

IHT normobaric<br />

Lo-Hi<br />

IHT hypobaric<br />

Lo-Hi<br />

Level /<br />

Gender<br />

College<br />

M<br />

Elite junior<br />

M+F<br />

Elite<br />

M<br />

Elite <strong>and</strong><br />

subelite<br />

M+F<br />

Elite<br />

M+F<br />

Tra<strong>in</strong>ed<br />

M+F<br />

Tra<strong>in</strong>ed<br />

M+F<br />

Tra<strong>in</strong>ed<br />

M<br />

Control /<br />

Design<br />

No<br />

Pre-post<br />

No<br />

Pre-post<br />

No<br />

Pre-post, same<br />

group at two<br />

altitudes<br />

Yes<br />

Pre-post,<br />

matchedpaired<br />

Yes<br />

Pre-post, two<br />

groups liv<strong>in</strong>g<br />

at 1200 m<br />

Yes<br />

Matchedpaired,<br />

r<strong>and</strong>omized,<br />

double bl<strong>in</strong>d<br />

Yes<br />

Matchedpaired,<br />

r<strong>and</strong>omized,<br />

double bl<strong>in</strong>d<br />

Yes<br />

Matchedpaired,<br />

r<strong>and</strong>omized<br />

n<br />

VO2max Altitude Duration Effect on<br />

performance §<br />

15 4.2 L/m<strong>in</strong> 2300 m 2 wks ↔<br />

at 200 <strong>and</strong> 500 yd TT<br />

16 ? 2100-2300 m 3 wks ↑<br />

Vmax <strong>and</strong> V4 (+2-3%*)<br />

at <strong>in</strong>cremental 5x100<br />

or 5x400 m test<br />

9 59 1850 vs 1200 m 13 d ↔<br />

Vmax at 4x200 & 2000<br />

m TT <strong>in</strong> 1850-m group<br />

8/8 59 Rest at<br />

≈4000-5500 m<br />

9/9 58<br />

at 1200 m<br />

Sleep/rest 5 d at<br />

≈2500 m <strong>and</strong> 8 d<br />

at ≈3000 m vs<br />

controls at 1200 m<br />

6/7 55 Rest at<br />

≈4000-5500 m<br />

8/8 48-50 Tra<strong>in</strong><strong>in</strong>g at<br />

≈2500 m<br />

6/6 56 Tra<strong>in</strong><strong>in</strong>g at<br />

≈1600-2400 m<br />

3 h/d over 2<br />

wks<br />

13 d,<br />

16 h/d<br />

3 h/d,<br />

5 d/wk over 4<br />

wks<br />

12.5 m<strong>in</strong> of<br />

high <strong>in</strong>tensity<br />

bouts added,<br />

3x/wk over 5<br />

wks<br />

2 daily HT<br />

sessions,<br />

5 d/wk over 3<br />

wks<br />

↑<br />

Vmax at 200 m TT<br />

(0.9%*)<br />

↔<br />

Vmax at 5x200 m<br />

<strong>and</strong> 2000 m TT<br />

conducted at 1200 m<br />

Only controls improved<br />

↔<br />

Vmax at 100 & 400 m<br />

<strong>and</strong> <strong>in</strong>cremental<br />

swimm<strong>in</strong>g flume test <strong>in</strong><br />

both groups<br />

↔<br />

at 100 <strong>and</strong> 400 m TT<br />

Both groups equally<br />

improved<br />

↔<br />

at 100 <strong>and</strong> 200 m TT<br />

Both groups equally<br />

improved<br />

Effect on VO2max § Other outcomes § References<br />

↔ Faulkner et al.<br />

(1967)<br />

?<br />

Not measured<br />

↔<br />

No changes <strong>in</strong> either<br />

group<br />

↑<br />

VO2peak at 200-m TT<br />

(+9.3%*) <strong>and</strong> at 400-m<br />

TT (+5.4%*)<br />

after 1-wk taper<br />

↔<br />

n.s.<br />

(+4.5% <strong>in</strong> H group)<br />

Both groups equally<br />

improved<br />

↑<br />

at <strong>in</strong>cremental<br />

swimm<strong>in</strong>g flume test<br />

(+7.5%*) after 2-wks<br />

taper<br />

↔<br />

Both groups equally<br />

improved<br />

↔<br />

Both groups equally<br />

improved<br />

↑ tHb-mass (+6.3%*) Friedmann et al.<br />

(2005)<br />

↑ Vmax at 2000 m TT<br />

at 1200-m group only<br />

↑ MCV <strong>and</strong> retics <strong>in</strong><br />

1850-m group only<br />

↑ <strong>in</strong> [Hb], Htc, retics*<br />

tHb-mass not measured<br />

↑ tHb mass (+8.5%*)<br />

↑ Vmax <strong>and</strong> TT 2000 m<br />

<strong>in</strong> controls only* after<br />

1-2 d, not after 15 d<br />

↑ Ventilatory threshold<br />

(+12.1%*)<br />

↔ tHB-mass<br />

↔ MAOD <strong>in</strong> both<br />

groups<br />

↑ MAOD <strong>in</strong> IHT group<br />

(+29%) vs control<br />

group (+14%)*<br />

Roels et al.<br />

(2006)<br />

Rodríguez et al.<br />

(2003)<br />

Robach et al.<br />

(2006)<br />

Rodríguez et al.<br />

(2007)<br />

Truijens et al.<br />

(2003)<br />

Ogita & Tabata<br />

(2003)<br />

LH-TH: Liv<strong>in</strong>g high-tra<strong>in</strong><strong>in</strong>g high; LH-TL: Liv<strong>in</strong>g high-tra<strong>in</strong><strong>in</strong>g low; IHE: Intermittent hypoxic exposure at rest <strong>and</strong>/or sleep; IHT: Intermittent hypoxic tra<strong>in</strong><strong>in</strong>g; M/F: male/female; TT: Time trial; MAOD: Maximal<br />

accumulated oxygen deficit; H: hypoxia/altitude group; N: normoxia group; Vmax: maximal speed; V4: speed at 4 mmol/L lactate. § Added effect <strong>in</strong> the experimental group (controlled studies); ↑: Increase; ↔: No change;<br />

*Significantly different from values measured before altitude/hypoxic tra<strong>in</strong><strong>in</strong>g or compared to control group (p≤0.05); n.s.: non-significant difference (p>0.05).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!