16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

tude <strong>and</strong> time delay of the slow component. In our study, low adjusted<br />

coefficients for the second exponential (fitt<strong>in</strong>g VO2 slow component<br />

k<strong>in</strong>etics) were observed to both trials above <strong>and</strong> below RCP. Despite<br />

high variability, this variable was <strong>in</strong> an acceptable range for the goodness<br />

of fit. There was observed a substantial variability for the most of<br />

the amplitude <strong>and</strong> time parameters of VO2 k<strong>in</strong>etics above <strong>and</strong> below<br />

RCP. Although, the accuracy of the estimation was not compromised<br />

<strong>and</strong> the on-k<strong>in</strong>etic response was described comprehensively across heavy<br />

<strong>and</strong> severe doma<strong>in</strong>s shift<strong>in</strong>g exercise <strong>in</strong>tensity slight above <strong>and</strong> below<br />

RCP. The ma<strong>in</strong> VO2 response shown <strong>in</strong> the two swim velocities were<br />

(a) patterns <strong>in</strong> the time constant for the primary <strong>and</strong> slow components<br />

rema<strong>in</strong>ed unchanged; (b) time delay was significantly shorter dur<strong>in</strong>g exercis<strong>in</strong>g<br />

at severe doma<strong>in</strong> only for primary component; <strong>and</strong> (c) although<br />

slow component was unchanged between heavy <strong>and</strong> severe doma<strong>in</strong>s,<br />

it lead to the atta<strong>in</strong>ment of VO2max when above RCP. Thus, some of<br />

trends reported to Carter et al. (2002) for changes <strong>in</strong> the amplitudes<br />

<strong>and</strong> k<strong>in</strong>etics of the VO2 response profiles on treadmill across heavy <strong>and</strong><br />

severe doma<strong>in</strong>s were also present <strong>in</strong> this study.<br />

The major f<strong>in</strong>d<strong>in</strong>g of this study is that VO2 k<strong>in</strong>etics <strong>in</strong> swimm<strong>in</strong>g<br />

around RCP gathers the pulmonary VO2 responses reflect<strong>in</strong>g heavy <strong>and</strong><br />

severe doma<strong>in</strong>s of exercise. Therefore, VO2 k<strong>in</strong>etics may be applied rather<br />

than CP to either dim<strong>in</strong>ish the tests used to access doma<strong>in</strong> boundaries<br />

or the protocol variability associated with the determ<strong>in</strong>ation of CP.<br />

Furthermore, if a challenge for coaches is to <strong>in</strong>duce a required profile<br />

of physiological responses from a given tra<strong>in</strong><strong>in</strong>g load, the study of VO2<br />

k<strong>in</strong>etics dur<strong>in</strong>g different swimm<strong>in</strong>g <strong>in</strong>tensities could provide a valuable<br />

<strong>in</strong>sight for tra<strong>in</strong><strong>in</strong>g prescription.<br />

reFerences<br />

Beaver W.L., Wasserman K., & Whipp B.J. (1986). A new method for<br />

detect<strong>in</strong>g threshold by gas exchange. J Appl Physiol, 60(6), 2020-2027.<br />

Beneke R. (2003). Maximal lactate steady state concentration (MLSS):<br />

experimental <strong>and</strong> modell<strong>in</strong>g approaches. Eur J Appl Physiol, 88, 361–<br />

369.<br />

Carter H., Pr<strong>in</strong>gle J.S.M., Jones A.M., & Doust J.H. (2002). Oxygen<br />

uptake k<strong>in</strong>etics dur<strong>in</strong>g treadmill runn<strong>in</strong>g across exercise <strong>in</strong>tensity doma<strong>in</strong>s.<br />

Eur J Appl Physiol, 86, 347–354.<br />

Dekerle J., Baron B., Dupont L., Vanvelcenaher J., & Pelayo P. (2003).<br />

Maximal lactate steady state, respiratory compensation threshold <strong>and</strong><br />

critical power. Eur J Appl Physiol, 89, 281–288.<br />

Dekerle J., Brickley G., Alberty M., & Pelayo P. (2009). Character<strong>in</strong>z<strong>in</strong>g<br />

the slope of the distance-time relationship <strong>in</strong> swimm<strong>in</strong>g. J Sci Med<br />

Sport, doi:10.1016/j.jsams.2009.05.007<br />

Demarie S., Sardella F., Billat V., Mag<strong>in</strong>i W., & Fa<strong>in</strong>a M. (2001). The<br />

VO 2 slow component <strong>in</strong> swimm<strong>in</strong>g. Eur J Appl Physiol, 84, 95-99.<br />

Fern<strong>and</strong>es R.J., Cardoso C.S., Soares S.M., Ascensão A., Colaço P.J.;<br />

& Vilas-Boas J.P. (2003) Time limit <strong>and</strong> VO 2 slow component at<br />

<strong>in</strong>tensities correspond<strong>in</strong>g to VO 2max <strong>in</strong> swimmers. Int J Sport Med,<br />

24, 576-581.<br />

Jones A.M., & Poole D.C. (2005). Introduction to oxygen uptake k<strong>in</strong>etics<br />

<strong>and</strong> historical development of the discipl<strong>in</strong>e. In Jones A.M., &<br />

Poole D.C. (eds) Oxygen uptake k<strong>in</strong>etics <strong>in</strong> sports, exercise <strong>and</strong> medic<strong>in</strong>e<br />

(pp: 03-36). Routledge: Ab<strong>in</strong>gdon.<br />

Kesk<strong>in</strong>en K.L., Rodríguez F.A., & Kesk<strong>in</strong>en O.P. (2003). Respiratory<br />

snorkel <strong>and</strong> valve system for breath-by-breath gas analysis <strong>in</strong> swimm<strong>in</strong>g.<br />

Sc<strong>and</strong> J Med Sci Sports, 13, 322–329.<br />

Morton R.H. (2006). The critical power <strong>and</strong> related whole-body bioenergetic<br />

models. Eur J Appl Physiol, 96, 339-354.<br />

Pr<strong>in</strong>gle J.S., & Jones A.M. (2002). Maximal lactate steady state, critical<br />

power <strong>and</strong> EMG dur<strong>in</strong>g cycl<strong>in</strong>g. Eur J Appl Physiol, 88, 214–226.<br />

chaPter3.PhysioLogy<strong>and</strong>Bioenergetics<br />

Hormonal, Immune, Autonomic <strong>and</strong> Mood State<br />

Variation <strong>in</strong> the Initial Preparation Phase of a W<strong>in</strong>ter<br />

Season, <strong>in</strong> Portuguese Male Swimmers<br />

rama, l. 1 , Alves, F. 2 , teixeira, A. 1<br />

1Research Centre for Sport <strong>and</strong> Physical Activity, University of Coimbra,<br />

Portugal<br />

2Faculty of Human K<strong>in</strong>etics, Technical University of Lisbon, Portugal<br />

At the <strong>in</strong>itial phase of seasonal preparation, swimmers are submitted<br />

to a sudden <strong>in</strong>crement of tra<strong>in</strong><strong>in</strong>g load. Because the amount of tra<strong>in</strong><strong>in</strong>g<br />

is normally less than the maximal that will be imposed later on <strong>in</strong> the<br />

season, coaches do not pay much attention to how athletes accommodate<br />

this <strong>in</strong>crement. This study aims to analyse at rest, the variation of<br />

serum <strong>and</strong> salivary cortisol <strong>and</strong> testosterone, salivary IgA, HRV <strong>and</strong> the<br />

Profile of Mood States (POMS) after the first meso-cycle of a w<strong>in</strong>ter<br />

swimm<strong>in</strong>g season <strong>in</strong> a sample of 13 male Portuguese swimmers<br />

of national level. In this study, the impact of the <strong>in</strong>itial phase of<br />

seasonal tra<strong>in</strong><strong>in</strong>g on the athlete’s adaptation <strong>in</strong> a multidimensional<br />

approach was <strong>in</strong>vestigated. Significant variation <strong>in</strong> hormonal,<br />

mood <strong>and</strong> autonomic variables were found, which justifies<br />

pay<strong>in</strong>g attention to athletes work tolerance, especially <strong>in</strong> the<br />

<strong>in</strong>itial phase.<br />

Key words: salivary IgA, heart rate variability, hormonal response,<br />

PoMs<br />

IntroductIon<br />

Swimm<strong>in</strong>g as an endurance sport is recognized as a sport where athletes<br />

are normally submitted to heavy tra<strong>in</strong><strong>in</strong>g loads. In seasonal plann<strong>in</strong>g the<br />

option at the beg<strong>in</strong>n<strong>in</strong>g of the season of a marked load <strong>in</strong> the tra<strong>in</strong><strong>in</strong>g<br />

volume is common, aim<strong>in</strong>g to hit as soon as possible, high volumes focus<strong>in</strong>g<br />

on aerobic adaptation (Pyne & Goldsmith, 2005). Because this<br />

does not correspond yet to the maximal requirements of the tra<strong>in</strong><strong>in</strong>g<br />

season, coaches do not always pay enough attention to the <strong>in</strong>ability of<br />

athletes to adapt to this sudden <strong>in</strong>crement of tra<strong>in</strong><strong>in</strong>g volume (Maglischo,<br />

2003). Although their performance capacity does not seem to be<br />

impaired, the high requirement of body resources often stresses the athlete’s<br />

adaptation capacity. This precarious balance between positive <strong>and</strong><br />

negative <strong>in</strong>fluence of the tra<strong>in</strong><strong>in</strong>g stimulus <strong>and</strong> the related fatigue, modulate<br />

tra<strong>in</strong><strong>in</strong>g adaptation. In the doma<strong>in</strong> of control of tra<strong>in</strong><strong>in</strong>g, researchers<br />

have put their efforts <strong>in</strong>to look<strong>in</strong>g for biological <strong>and</strong> psychological<br />

markers that can be used <strong>in</strong> an effective way to prevent <strong>in</strong>adequate adaptation<br />

(Norris & Smith, 2002).<br />

The hormonal response to tra<strong>in</strong><strong>in</strong>g is a recurrent strategy <strong>in</strong> the control<br />

of tra<strong>in</strong><strong>in</strong>g. Among the several markers used, the hormones testosterone<br />

<strong>and</strong> cortisol were among the most used to follow the response<br />

to tra<strong>in</strong><strong>in</strong>g load (Hooper, Mack<strong>in</strong>on et al, 1999). In brief, cortisol is<br />

considered because of its response to stress <strong>and</strong> catabolic action, while<br />

testosterone is used because is considered to be a marker of anabolic<br />

function. Look<strong>in</strong>g at the rest<strong>in</strong>g values of these hormones, the literature<br />

suggests that a decrease of testosterone <strong>and</strong> <strong>in</strong>crease of cortisol <strong>in</strong> endurance<br />

tra<strong>in</strong><strong>in</strong>g athletes is common (Duclos et al. 2001). Although the<br />

controversy persists, generally the reduction of cortisol is necessary as a<br />

pre-requisite for performance improvement (Bonifazi et al. 2000). The<br />

salivary content that corresponds to the free <strong>and</strong> biological active form<br />

of the hormones may constitute a less <strong>in</strong>vasive <strong>and</strong> preferable marker<br />

(Paccotti et al. 2005). It is accepted that salivary IgA is a mucosal immune<br />

marker that shows reduced values after long periods of tra<strong>in</strong><strong>in</strong>g<br />

which could compromise tra<strong>in</strong><strong>in</strong>g <strong>and</strong> performance capacity (Pyne et al.<br />

2000; Gleeson et al. 2000).<br />

Heart rate variability (HRV) has become a promiss<strong>in</strong>g <strong>and</strong> useful<br />

<strong>in</strong>dicator that reflects the autonomic response to tra<strong>in</strong><strong>in</strong>g. Autonomic<br />

217

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!