16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

dIscussIon<br />

The present study <strong>in</strong>tended to <strong>in</strong>vestigate Glu response dur<strong>in</strong>g an <strong>in</strong>cremental<br />

swimm<strong>in</strong>g test <strong>and</strong> verify whether GT could be determ<strong>in</strong>ed early<br />

<strong>in</strong> the swimm<strong>in</strong>g season. The ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>g of this study was the constant<br />

Glu level throughout the <strong>in</strong>cremental swimm<strong>in</strong>g test <strong>and</strong> that GT was<br />

not observed <strong>in</strong> competitive swimmers. The subjects <strong>in</strong> this study tra<strong>in</strong>ed<br />

on a daily basis as they were elite national level competitive swimmer.<br />

The physical activity preced<strong>in</strong>g this <strong>in</strong>vestigation was not controlled for,<br />

which is a limitation <strong>in</strong> this study. However, physical activity level <strong>and</strong><br />

nutritional state were controlled on the test<strong>in</strong>g day <strong>and</strong> the rest<strong>in</strong>g Glu<br />

<strong>and</strong> Bla were at a normal level (5.5 ± 0.8 mmol·l -1 <strong>and</strong> 1.2 ± 0.4 mmol·l -1 ,<br />

respectively).<br />

Previous studies reported that GT was observed dur<strong>in</strong>g an <strong>in</strong>cremental<br />

runn<strong>in</strong>g test on l<strong>and</strong> <strong>and</strong> GT significantly correlates with LT,<br />

VT <strong>and</strong> MLSS (Simões et al., 1999; Simões et al., 2003; Sotero et al.,<br />

2009). The possible mechanism for the GT observation is speculated to<br />

be affected by the activated catecholam<strong>in</strong>e <strong>and</strong> glucagon responses, thus<br />

the different hormonal response between swimm<strong>in</strong>g <strong>and</strong> runn<strong>in</strong>g could<br />

expla<strong>in</strong> the conflict<strong>in</strong>g results <strong>in</strong> this study. Unfortunately, runn<strong>in</strong>g <strong>and</strong><br />

hormone measurements were not performed <strong>in</strong> the present study.<br />

Flynn et al. (1990) <strong>in</strong>vestigated the Glu response dur<strong>in</strong>g 45 m<strong>in</strong> of<br />

swimm<strong>in</strong>g or runn<strong>in</strong>g (75% VO2max) <strong>and</strong> reported that a lower Glu<br />

level was observed after swimm<strong>in</strong>g than runn<strong>in</strong>g. In addition, this study<br />

demonstrated that ep<strong>in</strong>ephr<strong>in</strong>e levels was similar after both trials. However,<br />

the Glucagon to Insul<strong>in</strong> ratio (G:I ratio) was significantly higher<br />

for swimm<strong>in</strong>g than runn<strong>in</strong>g. Greater glucagon to <strong>in</strong>sul<strong>in</strong> ratio represents<br />

higher hepatic glucose production, therefore, it is suggested that the energy<br />

dem<strong>and</strong> of hepatic glycogen at the same relative exercise <strong>in</strong>tensity<br />

may differ between swimm<strong>in</strong>g <strong>and</strong> runn<strong>in</strong>g.<br />

An <strong>in</strong>creased reliance on carbohydrate dur<strong>in</strong>g swimm<strong>in</strong>g is also discussed<br />

<strong>in</strong> the work of Lavoie (1982). It is speculated that swimm<strong>in</strong>g may<br />

result <strong>in</strong> a preferential recruitment of type II fibers <strong>and</strong> thus <strong>in</strong>crease the<br />

dependence on glycolytic processes. Consider<strong>in</strong>g these studies, it is possible<br />

that glucose uptake was higher dur<strong>in</strong>g the <strong>in</strong>cremental swimm<strong>in</strong>g<br />

test than <strong>in</strong> runn<strong>in</strong>g <strong>and</strong> Glu did not <strong>in</strong>crease at the higher <strong>in</strong>tensity<br />

steps <strong>in</strong> the present study. Further <strong>in</strong>vestigation is needed to exam<strong>in</strong>e<br />

carbohydrate oxidation <strong>and</strong> hormonal response dur<strong>in</strong>g an <strong>in</strong>cremental<br />

swimm<strong>in</strong>g test to clarify the mechanism of the different Glu responses<br />

<strong>in</strong> swimm<strong>in</strong>g.<br />

On the other h<strong>and</strong>, the swimmer’s tra<strong>in</strong><strong>in</strong>g state dur<strong>in</strong>g this <strong>in</strong>vestigation<br />

may be another factor caus<strong>in</strong>g Glu not to <strong>in</strong>crease along<br />

with exercise <strong>in</strong>tensity <strong>in</strong>crement. Coggan et al. (1995) <strong>in</strong>vestigated<br />

the Glu response dur<strong>in</strong>g 30 m<strong>in</strong> at 80 % VO2max cycl<strong>in</strong>g compar<strong>in</strong>g<br />

endurance tra<strong>in</strong>ed cyclists <strong>and</strong> untra<strong>in</strong>ed subjects. They reported that<br />

rate of glucose disappearance dur<strong>in</strong>g exercise was 19 % lower <strong>in</strong> the<br />

tra<strong>in</strong>ed compared with the untra<strong>in</strong>ed subjects (27.0 ± 2.6 vs. 33.2 ± 1.5<br />

mumol·m<strong>in</strong>-1·kg-1; p< 0.001), consequently, dur<strong>in</strong>g exercise, plasma<br />

glucose concentration rose significantly <strong>in</strong> the tra<strong>in</strong>ed subjects but did<br />

not change <strong>in</strong> the untra<strong>in</strong>ed subjects. Thus, observation of GT dur<strong>in</strong>g<br />

an <strong>in</strong>cremental exercise test may reflect the endurance capacity level of<br />

the subject. The present study was conducted 4 – 5 weeks after the w<strong>in</strong>ter<br />

season commencement. Before the season, all subjects spent a one<br />

month rest<strong>in</strong>g period, so it could be that the endurance capacity of the<br />

present subject was not highly enhanced. As there is no study <strong>in</strong>vestigat<strong>in</strong>g<br />

the effect of endurance tra<strong>in</strong><strong>in</strong>g on GT, further study is warranted to<br />

exam<strong>in</strong>e Glu response dur<strong>in</strong>g an <strong>in</strong>cremental swimm<strong>in</strong>g test at higher<br />

levels of endurance, later <strong>in</strong> the season.<br />

conclusIon<br />

The present study was <strong>in</strong>tended to <strong>in</strong>vestigate Glu response dur<strong>in</strong>g an<br />

<strong>in</strong>cremental swimm<strong>in</strong>g test <strong>and</strong> verify whether GT could be determ<strong>in</strong>ed<br />

early <strong>in</strong> the swimm<strong>in</strong>g season. It was clarified that GT could not be<br />

determ<strong>in</strong>ed dur<strong>in</strong>g an <strong>in</strong>cremental swimm<strong>in</strong>g test. The fact that Glu did<br />

not <strong>in</strong>crease was speculated to be the different hormonal response dur<strong>in</strong>g<br />

swimm<strong>in</strong>g or the effect of the measurement period when swimmer’s<br />

chaPter3.PhysioLogy<strong>and</strong>Bioenergetics<br />

endurance capacity was not highly enhanced. Further research is needed<br />

to clarify the Glu response dur<strong>in</strong>g an <strong>in</strong>cremental swimm<strong>in</strong>g test by<br />

analyz<strong>in</strong>g the physiological responses more precisely.<br />

reFerences<br />

Coggan A.R., Raguso C.A., Williams B.D., Sidossis L.S., Gastaldelli A.<br />

(1995) Glucose k<strong>in</strong>etics dur<strong>in</strong>g high-<strong>in</strong>tensity exercise <strong>in</strong> endurancetra<strong>in</strong>ed<br />

<strong>and</strong> untra<strong>in</strong>ed humans. J. Appl. Physiol., 80,1073-1075.<br />

Flynn M.G., Costill D.L., Kirwan J.P., Mitchell J.B., Houmard J.A.,<br />

F<strong>in</strong>k W.J., Beltz J.D., D’Acquisto J. (1990) Fat storage <strong>in</strong> athlete:<br />

Metabolic <strong>and</strong> hormonal responses to swimm<strong>in</strong>g <strong>and</strong> runn<strong>in</strong>g. Int. J.<br />

Sports Med., 11, 433-440.<br />

Hollman L.H. (1985) Historical remarks on the development of the<br />

aerobic-anaerobic threshold up to 1966. Int. J. Sports Med., 6: 109-<br />

116.<br />

Júnior P.B., Neiva C.M., Denadai B.S. (2001) Effect of an acute betaadrenergic<br />

blockade on the blood glucose response dur<strong>in</strong>g lactate<br />

m<strong>in</strong>imum test. J. Sci. Med. Sport., 4, 257-265.<br />

Lavoie J.M. (1982) Blood metabolites dur<strong>in</strong>g prolonged exercise <strong>in</strong><br />

swimm<strong>in</strong>g <strong>and</strong> leg cycl<strong>in</strong>g. Eur. J. Appl. Physiol., 48, 127-133.<br />

Newell J., Higg<strong>in</strong>s D., Madden N., Cruickshank J., E<strong>in</strong>beck J., McMillan<br />

K., McDonald R. (2007) Software for calculat<strong>in</strong>g blood lactate<br />

endurance markers, J. Sports Sci., 25, 1403-1409.<br />

Simões H.G., Grubert Campbell C.S., Kokubun E., Denadai B.S.,<br />

Baldissera V. (1999) Blood glucose responses <strong>in</strong> humans mirror lactate<br />

responses for <strong>in</strong>dividual anaerobic threshold <strong>and</strong> for lactate m<strong>in</strong>imum<br />

<strong>in</strong> track tests. Eur. J. Appl. Physiol. Occup. Physiol., 80, 34-40.<br />

Simões H.G., Campbell C.S., Kushnick M.R., Nakamura A., Katsanos<br />

C.S., Baldissera V., Moffatt R.J. (2003) Blood glucose threshold <strong>and</strong><br />

the metabolic responses to <strong>in</strong>cremental exercise tests with <strong>and</strong> without<br />

prior lactic acidosis <strong>in</strong>duction. Eur. J. Appl. Physiol., 89, 603-611.<br />

Sotero R.C., Pardono E., L<strong>and</strong>wehr R., Campbell S.G., Simoes H.G.<br />

(2009) Blood glucose m<strong>in</strong>imum predicts maximal lactate steady state<br />

on runn<strong>in</strong>g. Int. J. Sports Med., 30, 643-646.<br />

Tanner R.K., Fuller K.L., Ross M.L. (2010) Evaluation of three portable<br />

blood lactate analysers: Lactate Pro, Lactate Scout <strong>and</strong> Lactate<br />

Plus. Eur. J. Appl. Physiol. [ahead of pr<strong>in</strong>t]<br />

Weitgasser R., Gappmayer B., Pichler M. (1999) Newer portable glucose<br />

meters – Analytical improvement compared with previous generation<br />

devices? Cl<strong>in</strong>. Chem., 45, 1821-1825.<br />

225

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!