16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

cost aga<strong>in</strong>st time performance <strong>in</strong> six distances, yield<strong>in</strong>g 114.5W. These<br />

references are out of range for tethered-power at MLSS, but are approached<br />

to the range of tethered-power at Fcrit (P Fcrit ).<br />

The estimated powers (P Fcrit <strong>and</strong> P TethMLSS ) are related, but statistically<br />

different, as the relationship observed to CV <strong>and</strong> v MLSS <strong>in</strong> nontethered<br />

crawl. Dekerle et al. (2005) also found significance for difference<br />

between v MLSS <strong>and</strong> CV <strong>in</strong> swimmers, despite the good relationship (r =<br />

0.87) between these variables. Also, the physiological responses when<br />

swimm<strong>in</strong>g 5% below <strong>and</strong> 5% above CV are those characteriz<strong>in</strong>g the<br />

heavy (susta<strong>in</strong>able steady-state) <strong>and</strong> severe (non-susta<strong>in</strong>able) <strong>in</strong>tensity<br />

doma<strong>in</strong>, whil<strong>in</strong>g responses at CV lies with<strong>in</strong> severe doma<strong>in</strong>s (Dekerle<br />

et al. 2009). These results support the conclusion that CP <strong>and</strong> MLSS do<br />

not represent the same physiological parameter, whilst associated workrate<br />

seemed to be correlated among group of tra<strong>in</strong>ed athletes (Pr<strong>in</strong>gle &<br />

Jones, 2002; Dekerle et al., 2005). It should be po<strong>in</strong>ted out that power<br />

parameters obta<strong>in</strong>ed from tethered swimm<strong>in</strong>g protocols further <strong>in</strong>crease<br />

the dissociation between the MLSS <strong>and</strong> CP, <strong>and</strong> the <strong>in</strong>ter<strong>in</strong>dividual<br />

differences for these variables. Otherwise, tethered swimm<strong>in</strong>g may be<br />

considered a reasonable ergometer to access aerobic endurance capacity<br />

based on both <strong>in</strong>vasive (lactate concentration profile) <strong>and</strong> non-<strong>in</strong>vasive<br />

(time to exhaustion model) methods, s<strong>in</strong>ce it ensures a force controll<strong>in</strong>g<br />

environment that is a requirement for MLSS <strong>and</strong> CP protocols<br />

Moreover, the differences <strong>in</strong> power output at tethered <strong>and</strong> non-tethered<br />

swimm<strong>in</strong>g seems to corroborate the conclusion of Dekerle et al.<br />

(2003) that the accuracy <strong>and</strong> reliability for evaluation of aerobic endurance<br />

relies on MLSS determ<strong>in</strong>ation, despite PC practicality. Nevertheless,<br />

the optimization of tra<strong>in</strong><strong>in</strong>g adaptation requires the def<strong>in</strong>ition of<br />

work-rate clusters of common profile of physiological response among<br />

subjects. Whether physiological response at VC (or PC) <strong>and</strong> at MLSS<br />

provides or not a common reference of exercise <strong>in</strong>tensity, it rema<strong>in</strong>s to<br />

be elucidated.<br />

Neither CV nor the mechanical power at Fcrit matches the assumption<br />

for MLSS, the highest constant <strong>in</strong>tensity that can be ma<strong>in</strong>ta<strong>in</strong>ed<br />

without progressive <strong>in</strong>creases <strong>in</strong> blood lactate concentration over time.<br />

Thus, the <strong>in</strong>terchangeable use of these parameters seems to be unreliable.<br />

However, further research about physiological contextualization of the<br />

mechanical power output at Fcrit <strong>and</strong> at MLSS must take <strong>in</strong>to account<br />

the technical ability of mov<strong>in</strong>g forward. This would improve the usefulness<br />

of data when assess<strong>in</strong>g exercise tolerance, assist<strong>in</strong>g <strong>in</strong> plann<strong>in</strong>g<br />

programme <strong>and</strong> predict<strong>in</strong>g performance <strong>in</strong> swimm<strong>in</strong>g.<br />

reFerences<br />

Beneke R., Leithäuser R.M., & Hütler M. (2001). Dependence of the<br />

maximal lactate steady-state on the motor pattern of exercise. Brit J<br />

Sports Med, 35, 192-196.<br />

Dekerle J., Baron B., Dupont L., Vanvelcenaher J., & Pelayo P. (2003).<br />

Maximal lactate steady state, respiratory compensation threshold <strong>and</strong><br />

critical power. Eur J Appl Physiol, 89, 281–288.<br />

Dekerle J., Pelayo P., Clipet B., Depretz G., Lefevre T., & Sidney M.<br />

(2005). Critical swimm<strong>in</strong>g speed does not represent the speed at<br />

maximal lactate steady-state. Int J Sport Med, 26, 524–530.<br />

Dekerle J., Brickley G., Alberty M., & Pelayo P. (2009). Character<strong>in</strong>z<strong>in</strong>g<br />

the slope of the distance-time relationship <strong>in</strong> swimm<strong>in</strong>g. J Sci Med<br />

Sport, doi: 10.1016/j.jsams.2009.05.007.<br />

deGroot G., & Ingen Schenau G.V. (1988). Fundamentals mechanics<br />

applied to swimm<strong>in</strong>g: technique <strong>and</strong> propell<strong>in</strong>g efficiency. In: Ungerechts<br />

B.E., Wilke K., & Reischle K. (ed) Swimm<strong>in</strong>g Science V, vol.<br />

18 (pp: 17-30).<br />

Ikuta Y., Wakayoshi K., & Nomura T. (1996). Determ<strong>in</strong>ations <strong>and</strong> validity<br />

of critical swimm<strong>in</strong>g force as performance <strong>in</strong>dex <strong>in</strong> tethered<br />

swimm<strong>in</strong>g. In: Troup J.P., Holl<strong>and</strong>er A.P., Strasse D., Trappe S.W.,<br />

Cappaert J.M., & Trappe T.A. (ed) <strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong><br />

Swimm<strong>in</strong>g VII, (pp: 146-151), E & FN SPON, London.<br />

Johnson R.E., Sharp R.L., & Hedrick C.E. (1993). Relationship of<br />

chaPter2.<strong>Biomechanics</strong><br />

swimm<strong>in</strong>g power <strong>and</strong> dryl<strong>and</strong> power to spr<strong>in</strong>t freestyle performance:<br />

a multiple regression approach. J Swim Res, 09, 10-14.<br />

Kjendlie P-L., & Thorsvald K. (2006). A tethered swimm<strong>in</strong>g power test<br />

is high reliable. In: Vilas-Boas J.P., Alves F., & Marques A. (ed). <strong>Biomechanics</strong><br />

<strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g X. Rev Port Ciên Desp, 6(2),<br />

231-235.<br />

Pr<strong>in</strong>gle J.S. & Jones A.M. (2002). Maximal lactate steady state, critical<br />

power <strong>and</strong> EMG dur<strong>in</strong>g cycl<strong>in</strong>g. EurJ Appl Physiol, 88, 214–226.<br />

Rouard A.H., Aujouannet Y.A., H<strong>in</strong>tz F., & Bonifazi M. (2006). Isometric<br />

force, tethered force <strong>and</strong> power ratios as tools for the evaluation<br />

of technical ability <strong>in</strong> freestyle swimm<strong>in</strong>g. In: Vilas-Boas J.P.,<br />

Alves F., & Marques A. (ed) <strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g<br />

X. Rev Port Ciên Desp, 6(2), 249-250.<br />

Swa<strong>in</strong>e I.L. (1994). The relationship between physiological variables<br />

from a swim bench ramp test <strong>and</strong> midlle-distance swimm<strong>in</strong>g performance.<br />

J Swim Res, 10, 41-48.<br />

Swa<strong>in</strong>e I.L. (1996). The relationship between 1500 m swimm<strong>in</strong>g performance<br />

<strong>and</strong> critical Power us<strong>in</strong>g an isok<strong>in</strong>etic swim bench. In:<br />

Troup J.P., Holl<strong>and</strong>er A.P., Strasse D., Trappe S.W., Cappaert J.M.,<br />

& Trappe T.A. <strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g VII, (pp: 229-<br />

233), E & FN SPON, London.<br />

Takahashi S., Wakayoshi K., Hayashi A., Sakaguchi Y., & Kitagawa K.<br />

(2009). A method for determ<strong>in</strong><strong>in</strong>g critical swimm<strong>in</strong>g velocity. International<br />

Journal of Sports <strong>Medic<strong>in</strong>e</strong>, 30, 119–123.<br />

Toussa<strong>in</strong>t H.M., Wakayoshi K., Holl<strong>and</strong>er A.P., & Ogita F. (1998).<br />

Simulated front crawl swimm<strong>in</strong>g performance related to critical<br />

speed <strong>and</strong> critical power. Med Sci Sports Exerc, 30(1), 144-151.<br />

AcKnoWledGeMents<br />

The authors wish to tank the subjects who agreed to participate <strong>in</strong> the<br />

study, <strong>and</strong> FUNDUNESP (00155-09/DFP) for the fund<strong>in</strong>g support.<br />

153

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!