16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

eFerences<br />

Benjanuvatra, N., Dawson, G., Blanksby, B. A. & Elliott, B. C. (2002).<br />

Comparison of buoyancy, passive <strong>and</strong> net active drag forces between<br />

Fastsk<strong>in</strong> <strong>and</strong> st<strong>and</strong>ard swimsuits. Journal of Science <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong><br />

Sport, 5(2), 115-23.<br />

Bixler, B., Pease, D. & Fairhurst, F. (2007). The accuracy of computational<br />

fluid dynamics analysis of the passive drag of a male swimmer.<br />

Sports <strong>Biomechanics</strong>, 6(1), 81-98.<br />

Chatard, J. C. & Wilson, B. (2008). Effect of fast-sk<strong>in</strong> suits on performance,<br />

drag, <strong>and</strong> energy cost of swimm<strong>in</strong>g. <strong>Medic<strong>in</strong>e</strong> <strong>and</strong> Science <strong>in</strong><br />

Sport Exercises, 40(6), 1149-54.<br />

Corda<strong>in</strong>, L. & Kopriva, R. (1991). Wetsuits, body density, <strong>and</strong> swimm<strong>in</strong>g<br />

performance. British Journal of Sports <strong>Medic<strong>in</strong>e</strong>, 25, 31-33.<br />

Guidel<strong>in</strong>es for the measurement of respiratory function. Recommendations<br />

of the British Thoracic Society <strong>and</strong> the Association of Respiratory<br />

Technicians <strong>and</strong> Physiologists (1994). Respiratory <strong>Medic<strong>in</strong>e</strong>, 88,<br />

165–194.<br />

McLean, S. P. & H<strong>in</strong>richs, R. N. (2000). Buoyancy, Gender, <strong>and</strong> Swimm<strong>in</strong>g<br />

Performance. Journal of Applied <strong>Biomechanics</strong>, 16, 248-63.<br />

Mollendorf, J. C., Term<strong>in</strong>, A. C., Oppenheim, E. & Pendergast, D. R.<br />

(2004). Effect of swim suit design on passive drag. <strong>Medic<strong>in</strong>e</strong> <strong>and</strong> Science<br />

<strong>in</strong> Sports <strong>and</strong> Exercise, 36(6), 1029-35.<br />

Pendergast, D. R., Mollendorf, J. C., Cuviello, R. & Term<strong>in</strong>, I. I. (2006).<br />

Application of teoretical pr<strong>in</strong>ciples to swimsuit drag reduction. Sports<br />

Eng<strong>in</strong>eer<strong>in</strong>g, 9, 65-76.<br />

Perrier, D. & Monteil, K. (2004). Triathlon wet suit <strong>and</strong> technical parameters<br />

at the start <strong>and</strong> end of a 1500-m swim. Journal of Applied<br />

<strong>Biomechanics</strong>, 20, 3-13.<br />

Perrier, D. & Monteil, M. (2002). Vitesse de nage en triathlon: étude<br />

comparative du cycle de bras en comb<strong>in</strong>aison <strong>in</strong>tégrale et sans manche.<br />

Science & Sports, 17(3), 117-21.<br />

Roberts, B. S., Kamel, K. S., Hedrick, C., Mclean, S. P. & Sharp, R. L.<br />

(2003), Effect of a fastsk<strong>in</strong> suit on submaximal freestyle swimm<strong>in</strong>g.<br />

<strong>Medic<strong>in</strong>e</strong> <strong>and</strong> Science <strong>in</strong> Sports <strong>and</strong> Exercise, 35(3), 519-24.<br />

Tomikawa, M. & Nomura, T. (2009). Relationships between swim<br />

performance, maximal oxygen uptake <strong>and</strong> peak power output when<br />

wear<strong>in</strong>g a wetsuit. Journal of Science <strong>Medic<strong>in</strong>e</strong> <strong>and</strong> Sport 12(2), 317-22.<br />

Tomikawa, M., Shimoyama, Y., Ichikawa, H. & Nomura, T. (2003). The<br />

effects of triathlon wet suit on stroke parameters, physiological parameters<br />

<strong>and</strong> performance dur<strong>in</strong>g swimm<strong>in</strong>g. <strong>in</strong> Chatard J.C., (eds)<br />

<strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g IX, 517-22, Université de<br />

St.Etienne.<br />

Toussa<strong>in</strong>t, H. M., Truijens, M., Elz<strong>in</strong>ga, M. J., Van de Ven, A., de Best,<br />

H. & De Groot, G. (2002). Effect of a Fast-sk<strong>in</strong> “body” suit on drag<br />

dur<strong>in</strong>g front crawl swimm<strong>in</strong>g. Sports <strong>Biomechanics</strong>, 1(1), 1-10.<br />

Yamamoto, K., Miyachi, M., Hara, S., Yamaguchi, H. & Onodera, S.<br />

(1999). Effect of a float<strong>in</strong>g swimsuit on oxygen uptake <strong>and</strong> heart rate<br />

dur<strong>in</strong>g swimm<strong>in</strong>g. <strong>in</strong> Kesk<strong>in</strong>en K., Komi P.V., Holl<strong>and</strong>er A.P., (eds)<br />

<strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g VIII, 375-79, University of<br />

Jyvaskyla.<br />

chaPter2.<strong>Biomechanics</strong><br />

The Development of a Component Based Approach<br />

for Swim Start Analysis<br />

cossor, J.M.¹, slawson, s.e.², Justham, l.M.², conway, P.P.²,<br />

West, A.A.²<br />

¹British Swimm<strong>in</strong>g, Loughborough, Engl<strong>and</strong><br />

²Wolfson School of Mechanical <strong>and</strong> Manufactur<strong>in</strong>g Eng<strong>in</strong>eer<strong>in</strong>g, Loughborough<br />

University, Loughborough, Engl<strong>and</strong><br />

A component-based system was developed to provide greater quantitative<br />

feedback of starts based on <strong>in</strong>put from British Swim coaches.<br />

Currently the <strong>in</strong>formation provided by the system comprises <strong>in</strong>tegrated<br />

vision, force data from an <strong>in</strong>strumented start<strong>in</strong>g platform <strong>and</strong> wireless<br />

three-axis acceleration data. Initial test<strong>in</strong>g has demonstrated the reliability<br />

of the system <strong>and</strong> the direct impact of <strong>in</strong>tervention with an elite<br />

athlete.<br />

Key words: swimm<strong>in</strong>g, starts, vision system, force platform, wireless<br />

acceleration<br />

IntroductIon<br />

Swimm<strong>in</strong>g races are divided <strong>in</strong>to the start, turn, <strong>and</strong> free swimm<strong>in</strong>g<br />

sections. The contribution of each phase to overall performance is dependant<br />

on race length. The start has a greater contribution to success<br />

<strong>in</strong> the spr<strong>in</strong>t events compared with longer distances. Analysis of female<br />

freestyle spr<strong>in</strong>t events at the Beij<strong>in</strong>g Olympics, illustrates that a 1% reduction<br />

<strong>in</strong> start time would be larger than the time difference between<br />

the first <strong>and</strong> second places (Slawson, 2010).<br />

Research on swimm<strong>in</strong>g starts has <strong>in</strong>cluded <strong>in</strong>formation on the block,<br />

flight, underwater <strong>and</strong> free swimm<strong>in</strong>g phases. Block time has been the<br />

most measured parameter although forces <strong>and</strong> velocities leav<strong>in</strong>g the<br />

block are generally discussed <strong>in</strong> relation to the block phase. Arellano et<br />

al. (2005) <strong>and</strong> Mason et al. (2007) suggested that <strong>in</strong>creased horizontal<br />

force results <strong>in</strong> better starts. Flight time <strong>and</strong> distance are the ma<strong>in</strong> reported<br />

parameters associated with the flight phase although the angle<br />

of entry has been noted as be<strong>in</strong>g important to overall start performance<br />

(Ruschel et al., 2007). While it is noted that the underwater phase can<br />

be the longest <strong>in</strong> terms of time, the block <strong>and</strong> flight phases significantly<br />

<strong>in</strong>fluence the drag forces experienced by the swimmer <strong>in</strong> the glide phase<br />

(Mason et al., 2007). Transition <strong>in</strong>to the break out <strong>and</strong> the free swimm<strong>in</strong>g<br />

sections also contribute to the overall start time <strong>and</strong> variations<br />

between swimmers are usually attributed to differences <strong>in</strong> underwater<br />

kick<strong>in</strong>g skill.<br />

The use of vision systems is still the most common analysis technique<br />

but it can be user <strong>in</strong>tensive <strong>and</strong> costly. Force plate analysis has<br />

been successful utilised due to the reliability of the system along with<br />

the capability to provide real time measures. To date, the limitation of<br />

utilis<strong>in</strong>g force data has been <strong>in</strong> the <strong>in</strong>terpretation of these data <strong>and</strong> the<br />

subsequent development of <strong>in</strong>terventions for improved performance.<br />

Accelerometers have been used <strong>in</strong> the underst<strong>and</strong><strong>in</strong>g of human movement<br />

<strong>and</strong> performance <strong>in</strong> areas such as gait, sleep <strong>and</strong> healthcare. Research<br />

us<strong>in</strong>g accelerometers <strong>in</strong> swimm<strong>in</strong>g has <strong>in</strong>cluded the derivation of<br />

<strong>in</strong>formation on stroke count, lap count <strong>and</strong> stroke type (James et al., 2004,<br />

Ohji, 2006, <strong>and</strong> Davey et al., 2008). Acceleration systems can be characterised<br />

<strong>in</strong>to either real-time data transmission or logg<strong>in</strong>g <strong>and</strong> download<br />

units. Only the latter system has been used <strong>in</strong> swimm<strong>in</strong>g research <strong>and</strong><br />

only on a one to one basis. Although useful <strong>in</strong>formation on free swimm<strong>in</strong>g<br />

performance has been dissem<strong>in</strong>ated from these studies, a wireless networked<br />

solution would enable data to be collected real time from a pool of<br />

athletes. A system has been designed, implemented <strong>and</strong> evaluated <strong>in</strong> the<br />

current research that allows many wireless nodes to transmit <strong>in</strong> real-time<br />

to a co-ord<strong>in</strong>at<strong>in</strong>g receiv<strong>in</strong>g unit that acts as the <strong>in</strong>terface to visualisation,<br />

analysis <strong>and</strong> storage on conventional personal computers.<br />

59

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!