16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

Table 2. Mean drag force (N), mean lift force (N), mean resultant force<br />

(N), mean effective force (N), <strong>and</strong> angle between the vector of the resultant<br />

force <strong>and</strong> the axis of swimm<strong>in</strong>g propulsion (deg) dur<strong>in</strong>g front crawl<br />

swimm<strong>in</strong>g with <strong>and</strong> without added resistance.<br />

90<br />

Without<br />

added<br />

resistance<br />

With<br />

added<br />

resistance<br />

t- value<br />

Pull phase Drag force 9.20 ± 2.57 9.16 ± 2.46 0.028<br />

Lift force 7.50 ± 2.45 5.76 ± 1.59 2.679<br />

Resultant force 12.34 ± 2.59 11.21 ± 2.38 1.061<br />

Effective force<br />

Angle between the vector of the<br />

resultant force <strong>and</strong> the axis of<br />

9.47 ± 1.71 10.04 ± 2.12 0.532<br />

swimm<strong>in</strong>g propulsion 36.31 ± 14.73 13.26 ± 15.37 2.877*<br />

Push phase Drag force 7.27 ± 2.40 8.76 ± 4.62 0.562<br />

Lift force 12.59 ± 2.32 11.70 ± 4.52 0.630<br />

Resultant force 14.93 ± 2.50 14.85 ± 6.28 0.033<br />

Effective force<br />

Angle between the vector of the<br />

resultant force <strong>and</strong> the axis of<br />

12.89 ± 2.06 13.19 ± 6.44 0.121<br />

* p < 0.05<br />

swimm<strong>in</strong>g propulsion -5.18 ± 16.76 -16.09 ± 9.56 1.462<br />

dIscussIon<br />

The results showed that dur<strong>in</strong>g resisted swimm<strong>in</strong>g the mean swimm<strong>in</strong>g<br />

velocity decreased significantly. This was expected, because both the<br />

stroke length, as well as the stroke rate decreased due to the <strong>in</strong>creased<br />

resistance that should be overcame by the swimmers (Llop et al., 2006;<br />

Maglischo et al., 1985; Williams et al., 2001).<br />

Dur<strong>in</strong>g spr<strong>in</strong>t-resisted swimm<strong>in</strong>g no significant modifications were<br />

observed <strong>in</strong> the magnitude of the drag <strong>and</strong> lift forces, <strong>in</strong> any of the propulsive<br />

phases of the underwater stroke. Consequently, it was not observed<br />

any significant modification <strong>in</strong> the magnitude of the resultant<br />

force <strong>and</strong> the effective force. However, the drag force seems to predom<strong>in</strong>ate<br />

more aga<strong>in</strong>st lift force <strong>in</strong> the pull phase dur<strong>in</strong>g resisted swimm<strong>in</strong>g,<br />

<strong>in</strong> comparison with free swimm<strong>in</strong>g. Although this fact was not statistically<br />

significant, it could be seen as a positive modification, as accord<strong>in</strong>g<br />

to Rushall et al. (1994), S<strong>and</strong>ers (1998) <strong>and</strong> Maglischo (2003), it is<br />

more effective when swimmers rely more on drag, rather than on lift<br />

forces. Such comb<strong>in</strong>ation of the drag <strong>and</strong> lift forces has as consequence<br />

to maximize their contribution to the forward direction <strong>and</strong> as much as<br />

possible of the resultant force to be aimed <strong>in</strong> the swimm<strong>in</strong>g direction.<br />

Optimally, the angle between the resultant force <strong>and</strong> the axis of swimm<strong>in</strong>g<br />

propulsion should be as close as possible to zero (Schleihauf, 2004;<br />

Vorontsov & Rumyantsev, 2000). In the present study, although the<br />

magnitude of the drag <strong>and</strong> the lift forces were not altered significantly,<br />

the angle formed between the resultant force <strong>and</strong> the axis of swimm<strong>in</strong>g<br />

propulsion was decreased significantly <strong>in</strong> the pull phase dur<strong>in</strong>g resisted<br />

swimm<strong>in</strong>g, <strong>in</strong> comparison with free swimm<strong>in</strong>g. The mean value of the<br />

above mentioned angle was decreased from approximately 36 degrees<br />

dur<strong>in</strong>g free swimm<strong>in</strong>g to 13 degrees dur<strong>in</strong>g resisted swimm<strong>in</strong>g <strong>and</strong> thus<br />

the resultant force was steered more <strong>in</strong> the forward swimm<strong>in</strong>g direction.<br />

conclusIon<br />

The ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs of the present study <strong>in</strong>dicate that although the magnitude<br />

of the drag <strong>and</strong> lift forces, as well as the magnitude of the resultant<br />

force <strong>and</strong> the effective propulsive force were not modified significantly<br />

dur<strong>in</strong>g resisted swimm<strong>in</strong>g, <strong>in</strong> comparison with free swimm<strong>in</strong>g,<br />

the angle formed between the resultant force <strong>and</strong> the axis of the swimm<strong>in</strong>g<br />

propulsion was decreased significantly <strong>in</strong> the pull phase. Thus, it<br />

could be speculated that front crawl spr<strong>in</strong>t-resisted swimm<strong>in</strong>g with the<br />

concrete added resistance could be considered a specific tra<strong>in</strong><strong>in</strong>gs form,<br />

which probably could contribute to the learn<strong>in</strong>g of a more effective application<br />

of the propulsive forces dur<strong>in</strong>g the pull phase.<br />

reFerences<br />

Arellano R. (1999). Vortices <strong>and</strong> propulsion. In: S<strong>and</strong>ers R. & L<strong>in</strong>sten J.<br />

(eds.), Swimm<strong>in</strong>g: Applied Proceed<strong>in</strong>gs of the XVII International Symposium<br />

on <strong>Biomechanics</strong> <strong>in</strong> Sports (pp 53 – 66). Perth, Western Australia:<br />

School of Biomedical <strong>and</strong> Sports Science.<br />

Chollet D., Chalies S., Chatard J. C. (2000). A new <strong>in</strong>dex of coord<strong>in</strong>ation<br />

for the crawl: description <strong>and</strong> usefulness. Int J Sports Med, 21,<br />

54 – 59.<br />

Girold S., Maur<strong>in</strong> D., Dugué B., Chatard J. C., Millet G. (2007). Effects<br />

of dry-l<strong>and</strong> vs. resisted <strong>and</strong> assisted - spr<strong>in</strong>t exercises on swimm<strong>in</strong>g<br />

spr<strong>in</strong>t performances. J Strength Cond Res, 21 (2), 599 – 605.<br />

Gourgoulis V., Aggeloussis N., Kasimatis P., Vezos N., Boli A., Mavromatis<br />

G. (2008a). Reconstruction accuracy <strong>in</strong> underwater three<br />

dimensional k<strong>in</strong>ematic analysis. J Sci Med Sport, 11, 90-95.<br />

Gourgoulis V., Aggeloussis N., Vezos N., Antoniou P., Mavromatis G.<br />

(2008b). H<strong>and</strong> orientation <strong>in</strong> h<strong>and</strong> paddle swimm<strong>in</strong>g. Int J Sports<br />

Med, 29, 429 – 434.<br />

Gourgoulis V., Aggeloussis N., Vezos N., Kasimatis P., Antoniou P.,<br />

Mavromatis G. (2008c). Estimation of h<strong>and</strong> forces <strong>and</strong> propell<strong>in</strong>g<br />

efficiency dur<strong>in</strong>g front crawl swimm<strong>in</strong>g with h<strong>and</strong> paddles. J Biomech,<br />

41, 208 – 215.<br />

Llop F., Tella V., Colado J.C., Diaz G., Navarro F. (2006). Evolution of<br />

butterfly technique when resisted swimm<strong>in</strong>g with parachute, us<strong>in</strong>g<br />

different resistances. In: Vilas-Boas J. P., Alves F., Marques A. (eds.).<br />

<strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> swimm<strong>in</strong>g. Xth International Symposium<br />

(pp 302 – 304). Porto, Portugal.<br />

Maglischo C. W., Maglischo E. W., Sharp R. L., Zier D. J., Katz A.<br />

(1984). Tethered <strong>and</strong> nontethered crawl swimm<strong>in</strong>g. In: Terauds J.,<br />

Barthels K., Kreighbaum E., Mann R., Crakes J. (eds.). Proceed<strong>in</strong>gs<br />

of ISBS: Sports <strong>Biomechanics</strong> (pp 163-176). Del Mar, C. A.: Academic<br />

Publication.<br />

Maglischo E. W., Maglischo C. W., Zier D. J., Santos T. R. (1985). The<br />

effect of spr<strong>in</strong>t – assisted <strong>and</strong> spr<strong>in</strong>t resisted swimm<strong>in</strong>g on stroke mechanics.<br />

J Swim Res, 1, 27-33.<br />

Maglischo E. W. (2003). Swimm<strong>in</strong>g fastest. Champaign, IL: Human<br />

K<strong>in</strong>etics.<br />

Mavridis G., Kabitsis Ch., Gourgoulis V., Toubekis A. (2006). Swimm<strong>in</strong>g<br />

velocity improved by specific resistance tra<strong>in</strong><strong>in</strong>g <strong>in</strong> age-group<br />

swimmers. In: Vilas-Boas J. P., Alves F., Marques A. (eds.). <strong>Biomechanics</strong><br />

<strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> swimm<strong>in</strong>g. Xth International Symposium (pp<br />

304 – 306). Porto, Portugal.<br />

Rushall B. S., Sprig<strong>in</strong>gs E. J., Holt L. E., Cappaert J. M. (1994). A Reevaluation<br />

of forces <strong>in</strong> swimm<strong>in</strong>g. J Swim Res, 10, 6 – 30.<br />

S<strong>and</strong>ers R. H. (1998). Lift performance <strong>in</strong> aquatic sports. In: Riehle H.<br />

J. & Vieten M. M. (eds). Proceed<strong>in</strong>gs XVI International Symposium of<br />

<strong>Biomechanics</strong> <strong>in</strong> Sports (pp 25 – 39). Germany: University of Konstanz.<br />

S<strong>and</strong>ers R. (1999). Hydrodynamic characteristics of a swimmer’s h<strong>and</strong>.<br />

J Appl Biomech, 15, 3 – 26.<br />

Schleihauf R. E. (2004). <strong>Biomechanics</strong> of Human Movement. Bloom<strong>in</strong>gton,<br />

Indiana: Authorhouse.<br />

Toussa<strong>in</strong>t H. M., Holl<strong>and</strong>er A. P., Berg Cvd., Vorontsov A. R. (2000).<br />

<strong>Biomechanics</strong> of swimm<strong>in</strong>g. In: Garrett W. E., Kirkendall D. T.<br />

(eds.). Exercise <strong>and</strong> Sport Science (pp 639-660). Philadelphia, Lipp<strong>in</strong>cott:<br />

Williams & Wilk<strong>in</strong>s.<br />

Vorontsov A. R., Rumyantsev V. A. (2000). Propulsive forces <strong>in</strong> swimm<strong>in</strong>g.<br />

In: Zatsiorsky V. M. (ed.). <strong>Biomechanics</strong> <strong>in</strong> Sport – Performance,<br />

enhancement <strong>and</strong> <strong>in</strong>jury prevention (pp 205-231). International Olympic<br />

Committee: Blackwell Science Ltd.<br />

Williams B. K., S<strong>in</strong>clair P., Galloway M. (2001). The effect of resisted<br />

<strong>and</strong> assisted freestyle swimm<strong>in</strong>g on stroke mechanics. In: Blackwell<br />

J. R., S<strong>and</strong>ers R. H. (eds.). Proceed<strong>in</strong>gs of Swim Sessions. <strong>XI</strong>X International<br />

Symposium on <strong>Biomechanics</strong> <strong>in</strong> Sports (pp 131 – 134). San<br />

Francisco, USA.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!