16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

dIscussIon<br />

Despite a previous case study by Morais et al. (2008), <strong>and</strong> a study that was<br />

conducted with spr<strong>in</strong>t swimmers perform<strong>in</strong>g at <strong>in</strong>cremental sub-maximal<br />

<strong>in</strong>tensities (Komar et al., 2010), the present study is the first that aimed to<br />

relate IdC <strong>and</strong> C <strong>in</strong> front crawl. The present results agree with both the<br />

referred studies, f<strong>in</strong>d<strong>in</strong>g positive <strong>and</strong> significant r values between both variables.<br />

In this study, however, it was confirmed that this is true for velocity<br />

values rang<strong>in</strong>g from very low to heavy exercise <strong>in</strong>tensities (~ V � O2max).<br />

All swimmers reached their maximal aerobic power dur<strong>in</strong>g the <strong>in</strong>cremental<br />

protocol, which was assured by traditional physiological criteria (cf.<br />

Fern<strong>and</strong>es et al., 2003). Subjects presented V � O2max mean values similar<br />

to those described <strong>in</strong> the literature for experienced competitive swimmers<br />

(Wakayoshi et al, 1995; Rodriguez <strong>and</strong> Mader, 2003; Fern<strong>and</strong>es et al., 2006).<br />

The obta<strong>in</strong>ed mean values of [La - ]max are <strong>in</strong> accordance with the literature<br />

for <strong>in</strong>tensities of exercise correspond<strong>in</strong>g to V � O2max (Fern<strong>and</strong>es et al.,<br />

2003; Rodriguez <strong>and</strong> Mader, 2003; Fern<strong>and</strong>es et al., 2006).<br />

Along the <strong>in</strong>cremental protocol it was observed that an <strong>in</strong>crease <strong>in</strong> the<br />

swimm<strong>in</strong>g <strong>in</strong>tensity led to an <strong>in</strong>crease of the IdC. This is consistent with<br />

previous studies that showed a raise of IdC values with <strong>in</strong>creas<strong>in</strong>g race paces,<br />

namely from 1500/800 to 50 m freestyle (Chollet et al., 2000; Seifert et al.,<br />

2004; Seifert et al., 2007). This <strong>in</strong>crease seems to be a strategy that swimmers<br />

use to overcome higher active drag that is related with higher swimm<strong>in</strong>g<br />

velocity (Seifert et al., 2004). These data also reveals that swimmers changed<br />

their arm stroke coord<strong>in</strong>ation, from moderate to heavy exercise <strong>in</strong>tensities, <strong>in</strong><br />

order to be able to reach higher swimm<strong>in</strong>g velocity. In fact, this shift <strong>in</strong> IdC<br />

from a catch-up pattern to a pattern closer to the opposition coord<strong>in</strong>ation<br />

mode, aim<strong>in</strong>g to achieve higher propulsive cont<strong>in</strong>uity at V � O 2 max swimm<strong>in</strong>g<br />

<strong>in</strong>tensity, was also described before (Chollet et al., 2000; Seifert et al.,<br />

2004; Seifert et al., 2007). The values of IdC obta<strong>in</strong>ed <strong>in</strong> the present study<br />

were similar to those obta<strong>in</strong>ed <strong>in</strong> the previously mentioned studies <strong>and</strong> it did<br />

not reach positive values s<strong>in</strong>ce IdC>0% only occurs after 93% of the swimmers<br />

maximal velocity, which corresponds to the 100 m maximal velocity<br />

(Seifert et al., 2004).<br />

Such as the IdC, the C values also <strong>in</strong>creased with velocity. This fact has<br />

been described before for front crawl stroke with similar C values (Zamparo<br />

et al., 2005; Morais et al., 2008; Komar et al, 2010), <strong>and</strong> seems to be justified<br />

by the <strong>in</strong>creas<strong>in</strong>g power output (P = Dv) necessary to overcome drag (D),<br />

<strong>and</strong> presumably by the <strong>in</strong>crease <strong>in</strong> <strong>in</strong>ternal work associated with a higher<br />

stroke rate.<br />

The ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>g of this study was the very high direct relationship between<br />

IdC <strong>and</strong> C, which is, as stated, <strong>in</strong> accordance with previous studies <strong>in</strong><br />

swimm<strong>in</strong>g, but also <strong>in</strong> human terrestrial locomotion, namely <strong>in</strong> the walk-run<br />

transition (cf. Seifert et al., 2007). Studies have been carried out <strong>in</strong> order<br />

to relate the C with other biomechanical parameters. Barbosa et al. (2008)<br />

showed that the C is highly related to stroke parameters, namely with stroke<br />

rate <strong>and</strong> stroke length, while Chatard et al. (1990) showed that C is dependent<br />

on swimm<strong>in</strong>g technique. In this sense, after observ<strong>in</strong>g that the IdC, a<br />

coord<strong>in</strong>ative parameter, is strongly related with C, our results seems to be<br />

consistent with literature (Alberty et al., 2005), <strong>in</strong>dicat<strong>in</strong>g that the mode of<br />

coord<strong>in</strong>ation might be an <strong>in</strong>dividual response to physiological constra<strong>in</strong>ts<br />

associated to the task. However, despite the agreement of the results of other<br />

approaches, the simple analysis of the r value obta<strong>in</strong>ed between IdC <strong>and</strong> C<br />

shows that the C <strong>in</strong>crease with the <strong>in</strong>creased cont<strong>in</strong>uity of technique (higher<br />

IdC), which seems to be paradoxal, be<strong>in</strong>g probably expla<strong>in</strong>able by the fact<br />

that both parameters are strongly <strong>in</strong>fluenced by velocity (as shown <strong>in</strong> fig.<br />

1). In accordance, we decided to analyse the partial correlation of the two<br />

variables remov<strong>in</strong>g the effect of velocity. Surpris<strong>in</strong>gly, IdC <strong>and</strong> C did not<br />

correlate significantly (r=0.42, p=0.40). Furthermore, the obta<strong>in</strong>ed r value<br />

rema<strong>in</strong>s positive, while it was theoretically expected a negative relationship.<br />

Indeed, we hypothesised that, controll<strong>in</strong>g the velocity effect, the reduction of<br />

propulsive discont<strong>in</strong>uities should allow the front crawl technique to become<br />

more economical, <strong>in</strong>stead of imply<strong>in</strong>g higher energy costs. Samples with<br />

higher number of subjects as well as other factors (e.g. <strong>in</strong>tracyclic velocity<br />

variation) should be searched to expla<strong>in</strong> these apparently conflict<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs.<br />

Particularly, we recommend to study IdC <strong>and</strong> C at the same swimm<strong>in</strong>g<br />

76<br />

velocity performed <strong>in</strong> different subjects, <strong>and</strong> <strong>in</strong> the same subjects manipulat<strong>in</strong>g<br />

coord<strong>in</strong>ation.<br />

reFerences<br />

Alberty, M., Sidney, M., Huot-March<strong>and</strong>, F., Hespel, J. M. & Pelayo, P.<br />

(2005) Intracyclic velocity variations <strong>and</strong> arm coord<strong>in</strong>ation dur<strong>in</strong>g exhaustive<br />

exercise <strong>in</strong> front crawl stroke. Int J Sports Med, 26(6), 471-5.<br />

Barbosa, T. M., Fern<strong>and</strong>es, R. J., Kesk<strong>in</strong>en, K. L. & Vilas-Boas, J. P. (2008).<br />

The <strong>in</strong>fluence of stroke mechanics <strong>in</strong>to energy cost of elite swimmers. Eur<br />

J Appl Physiol, 103(2), 139-49.<br />

Chatard, J. C., Collomp, C., Maglischo, E. & Maglischo, C. (1990). Swimm<strong>in</strong>g<br />

skill <strong>and</strong> strok<strong>in</strong>g characteristics of front crawl swimmers. Int J<br />

Sports Med, 11(2), 156-61.<br />

Chollet, D., Chalies, S. & Chatard, J. C. (2000). A new <strong>in</strong>dex of coord<strong>in</strong>ation<br />

for the crawl: description <strong>and</strong> usefulness. Int J Sports Med, 21(1), 54-9.<br />

Fern<strong>and</strong>es, R. J., Cardoso, C. S., Soares, S. M., Ascensão, A., Colaco, P. J. &<br />

Vilas-Boas, J. P. (2003). Time limit <strong>and</strong> VO2 slow component at <strong>in</strong>tensities<br />

correspond<strong>in</strong>g to VO2max <strong>in</strong> swimmers. Int J Sports Med, 24(8),<br />

576-81.<br />

Fern<strong>and</strong>es, R. J., Billat, V. L., Cruz, A. C., Colaço, P. J., Cardoso, C. S. &<br />

Vilas-Boas, J. P. (2006). Does net energy cost of swimm<strong>in</strong>g affect time<br />

to exhaustion at the <strong>in</strong>dividual’s maximal oxygen consumption velocity? J<br />

Sports Med Phys Fitness, 46(3), 373-80.<br />

Kjendlie, P. L., Ingjer, F., Stallman, R. & Stray-Gundersen, J. (2004). Factors<br />

affect<strong>in</strong>g swimm<strong>in</strong>g economy <strong>in</strong> children <strong>and</strong> adults. Eur J Appl Physiol,<br />

93, 1164-8.<br />

Komar, J., Leprêtre, P. M., Alberty, M., Vantorre, J., Fern<strong>and</strong>es, R.J., Hellard,<br />

et al. (2010). Effect of Increas<strong>in</strong>g Energy Cost on Arm Coord<strong>in</strong>ation<br />

at Different Exercise Intensities <strong>in</strong> Elite Spr<strong>in</strong>t Swimmers. In: Kjendlie,<br />

P.L., Stallman, R.K. & Cabri, J. (eds.). <strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong><br />

Swimm<strong>in</strong>g <strong>XI</strong>. Oslo. In Press.<br />

Kesk<strong>in</strong>en, K. L. & Komi, P. V. (1993). Strok<strong>in</strong>g characteristics of front crawl<br />

swimm<strong>in</strong>g dur<strong>in</strong>g exercise. J Appl Biomech, 9, 219-26.<br />

Kesk<strong>in</strong>en, K. L., Rodríguez, F. A. & Kesk<strong>in</strong>en, O. P. (2003). Respiratory<br />

snorkel <strong>and</strong> valve system for breath-by-breath gas analysis <strong>in</strong> swimm<strong>in</strong>g.<br />

Sc<strong>and</strong> J Med Sci Sports, 13, 322-29.<br />

Morais, P., Vilas-Boas, J. P., Seifert, L., Chollet, D., Kesk<strong>in</strong>en, K.L. & Fern<strong>and</strong>es,<br />

R. (2008). Relationship between energy cost <strong>and</strong> the <strong>in</strong>dex of<br />

coord<strong>in</strong>ation <strong>in</strong> crawl - a pilot study. J Sport Sci, 26(Suppl. 1), 11.<br />

Rodriguez, F. A. & Mader, A. (2003). Energy metabolism dur<strong>in</strong>g 400<br />

<strong>and</strong> 100m crawl swimm<strong>in</strong>g: Computer simulation based on free swimm<strong>in</strong>g<br />

measurements. In: Chatard, J. C. (ed.). <strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong><br />

<strong>in</strong> Swimm<strong>in</strong>g IX. Sa<strong>in</strong>t-Étienne: Publications de l’Université de Sa<strong>in</strong>t-<br />

Étienne, 373-378.<br />

Seifert, L., Chollet, D. & Bardy, B. G. (2004). Effect of swimm<strong>in</strong>g velocity<br />

on arm coord<strong>in</strong>ation <strong>in</strong> the front crawl: a dynamic analysis. J Sports Sci,<br />

22(7), 651-60.<br />

Seifert, L., Chollet, D. & Rouard, A. (2007). Swimm<strong>in</strong>g constra<strong>in</strong>ts <strong>and</strong> arm<br />

coord<strong>in</strong>ation. Hum Mov Sci, 26(1), 68-86.<br />

Vilas-Boas, J. P. (1996). Speed fluctuations <strong>and</strong> energy cost with different<br />

breaststroke techniques, In: Troup J, Holl<strong>and</strong>er AP, Strass D (eds.). <strong>Biomechanics</strong><br />

<strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g VII. London: E&FN SPON, 167-<br />

171.<br />

Vilas-Boas, J. P., Cunha, P., Figueiras, T., Ferreira, M. & Duarte, J. A. (1996).<br />

Movement analysis <strong>in</strong> simultaneous swimm<strong>in</strong>g techniques. In: Wilke<br />

K, Daniel K, Hoffmann U, Klauck, J (eds.). Symposiumsbericht Kolner<br />

Schwimmsportage. Bockenem: Sport Fahnemann Verlag, 95-103.<br />

Wakayoshi, K., D’Acquisto, L., Cappaert, J. & Troup, J. (1995). Relationship<br />

between oxygen uptake, stroke rate <strong>and</strong> swimm<strong>in</strong>g velocity <strong>in</strong> competitive<br />

swimm<strong>in</strong>g. Int J Sports Med, 16(1), 19-23.<br />

Zamparo, P., Pendargast, D., Mollendorf, J., Term<strong>in</strong>, A. & M<strong>in</strong>etti, A. (2005).<br />

An Energy Balance of Front Crawl. Eur J Appl Physiol, 94, 134-44.<br />

AcKnoWledGeMents<br />

This study was supported by grant: PTDC/DES/101224/2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!