16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

Figure 3. The Speedo Fastsk<strong>in</strong> LZR racer (LZR) swimsuits.<br />

Digitiz<strong>in</strong>g <strong>and</strong> data analysis: A motion analysis system (Frame-DIAS4,<br />

DKH, Japan) was used to digitize ten body l<strong>and</strong>marks. The ten anatomical<br />

l<strong>and</strong>marks chosen <strong>and</strong> identified are as follows: f<strong>in</strong>ger tips, head,<br />

tragus (ear), acromions, elbow, wrist, large trochanter, knee(femoral condyles),<br />

lateral malleolus, toes. The angular displacement of the jo<strong>in</strong>ts are<br />

def<strong>in</strong>ed as <strong>in</strong>ternal jo<strong>in</strong>t angles (Figure 4).<br />

186<br />

Elbow jo<strong>in</strong>t<br />

angle<br />

Shoulder jo<strong>in</strong>t<br />

angle Hip jo<strong>in</strong>t<br />

anlge<br />

Knee jo<strong>in</strong>t<br />

angle<br />

Figure 4. The def<strong>in</strong>ition of the jo<strong>in</strong>t angular displacement.<br />

Ankle jo<strong>in</strong>t<br />

angle<br />

results<br />

Figure 5 <strong>in</strong>dicates the stick picture of a swimmer obta<strong>in</strong>ed by means of<br />

the motion analysis system. The swimm<strong>in</strong>g speed of the subject’s center<br />

of gravity wear<strong>in</strong>g a conventional swimsuit decreased when the flexionextension<br />

movement <strong>in</strong> the knee <strong>and</strong> the hip jo<strong>in</strong>ts were performed dur<strong>in</strong>g<br />

underwater glid<strong>in</strong>g motion (a typical example is shown <strong>in</strong> Figure 6).<br />

On the other h<strong>and</strong>, the swimm<strong>in</strong>g velocity of those wear<strong>in</strong>g an LZR<br />

swimsuit showed that the highest speed was ma<strong>in</strong>ta<strong>in</strong>ed dur<strong>in</strong>g the<br />

glid<strong>in</strong>g motion when the knee <strong>and</strong> the hip jo<strong>in</strong>t angles of 180 degrees<br />

were ma<strong>in</strong>ta<strong>in</strong>ed from the push-off from the wall to 0.8sec (1.82m) (a<br />

typical example is shown <strong>in</strong> Figure 7).<br />

The high-speed swimsuit ma<strong>in</strong>ta<strong>in</strong>ed a streaml<strong>in</strong>e <strong>in</strong> a knee jo<strong>in</strong>t <strong>and</strong><br />

a hip jo<strong>in</strong>t of 180 degrees <strong>in</strong> longer time (Table 1). In addition, duration of<br />

the swimm<strong>in</strong>g speed of the 90% equivalency of the best swimm<strong>in</strong>g speed<br />

was significantly longer wear<strong>in</strong>g high-speed swimsuit (Table 2).<br />

Figure 5. The stick picture of the swimmer.<br />

Angular displacement<br />

(degree)<br />

200<br />

190<br />

180<br />

170<br />

160<br />

150<br />

Subj.GY (Normal swimsuit)<br />

0 0.2 0.4 0.6 0.8 1<br />

Time (sec)<br />

Hip jo<strong>in</strong>t Knee jo<strong>in</strong>t Velocity of CG<br />

Figure 6. Relationship between the jo<strong>in</strong>t angle <strong>and</strong> the velocity for the<br />

normal swimsuit. This figure <strong>in</strong>dicates that the knee <strong>and</strong> hip jo<strong>in</strong>ts were<br />

performed flexion-extension movement from start to 0.8sec (1.2m).<br />

Angular displacement<br />

(degree)<br />

200<br />

190<br />

180<br />

170<br />

160<br />

150<br />

Subj.GY (High-speed swimsuit)<br />

0 0.2 0.4 0.6 0.8 1<br />

Time (sec)<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

Hip jo<strong>in</strong>t Knee jo<strong>in</strong>t Velocity of CG<br />

Figure 7. Relationship between the jo<strong>in</strong>t angle <strong>and</strong> the velocity for the<br />

LZR swimsuit. This figure <strong>in</strong>dicates that the knee <strong>and</strong> hip jo<strong>in</strong>ts angle<br />

<strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g <strong>XI</strong> Chapter 2 <strong>Biomechanics</strong> b were fixed about 180 degree from start to 0.8sec (1.2m).<br />

184<br />

Table <strong>Biomechanics</strong> 1. The <strong>and</strong> comparison <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g high-speed <strong>XI</strong> swimsuit Chapter <strong>and</strong> 2 <strong>Biomechanics</strong> normal swimsuit b 184 <strong>in</strong><br />

Table angular 1. displacement. The comparison (n=12) high-speed swimsuit <strong>and</strong> normal swimsuit <strong>in</strong> angular<br />

displacement. (n=12)<br />

Normal High-speed<br />

Table 1. The comparison high-speed swimsuit <strong>and</strong> swimsuit normal swimsuit <strong>in</strong> angular<br />

displacement. (n=12)<br />

Ave SD Ave SD<br />

Maximum hip jo<strong>in</strong>t angle(degree) 190.6 Normal 5.7<br />

swimsuit<br />

186.0 High-speed 4.3<br />

swimsuit<br />

p

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!