16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

<strong>in</strong>terval performed at lactate threshold, all seven swimmers exhibited a<br />

slow component of · VO2 lead<strong>in</strong>g to an atta<strong>in</strong>ment of 99% of · VO2 max.<br />

The present study demonstrated that the two-term exponential model<br />

fit performance better than the s<strong>in</strong>gle-term exponential model when applied<br />

to a population of seven elite swimmers swimm<strong>in</strong>g at a velocity correspond<strong>in</strong>g<br />

to LT (higher determ<strong>in</strong>ation coefficient <strong>and</strong> lower CP score).<br />

Bell et al. (2001) demonstrated that this method of model<strong>in</strong>g the · VO2 response (two-components model from 20 sec after exercise onset to the<br />

end) is more appropriate <strong>and</strong> accurate than previous methods, even if the<br />

description of phase 3 is still unsatisfy<strong>in</strong>g <strong>and</strong> if the physiological basis for<br />

fitt<strong>in</strong>g an exponential to this phase is still unclear. The determ<strong>in</strong>ation coefficient,<br />

r² = 0.62 ± 0.17 was slightly lower <strong>and</strong> the coefficients of variation<br />

equivalent to those observed <strong>in</strong> the ecological runn<strong>in</strong>g sett<strong>in</strong>g (Borrani<br />

et al., 2001). Us<strong>in</strong>g the same estimation method, these authors reported<br />

that the coefficient of variation for the amplitude of the slow component<br />

A2 was 47.8% with the same · VO2 k<strong>in</strong>etics model dur<strong>in</strong>g a limited time<br />

of runn<strong>in</strong>g at 100% v · VO2 max. The greater imprecision compared with<br />

laboratory studies such as reported by Borrani et al. (2001) who found<br />

coefficients of variation below 15% for all parameters of the model except<br />

TD1 could be expla<strong>in</strong>ed by mathematical <strong>and</strong> methodological differences.<br />

The number of data po<strong>in</strong>ts for breath-by-breath analysis (240<br />

± 36) would have to be greater to allow for more accurate adjustment of<br />

the two-component model with six parameters. S<strong>in</strong>ce the bi-exponential<br />

model is non-l<strong>in</strong>ear, <strong>in</strong>ference is based on asymptotic theory which, as recommended<br />

(Wetherill et al., 1986), would require 180 to 300 data po<strong>in</strong>ts<br />

for our study. Another source of variability would be greater variations <strong>in</strong><br />

exertion <strong>in</strong> the sett<strong>in</strong>g of ecological exercises (runn<strong>in</strong>g, swimm<strong>in</strong>g) compared<br />

with laboratory conditions. The fact that our swimmers controlled<br />

their velocity us<strong>in</strong>g the visual or auditory l<strong>and</strong>marks probably imposed a<br />

certa<strong>in</strong> degree of variability on muscle workload which was expressed by<br />

greater · VO2 variability. In addition, the turn<strong>in</strong>g phases with the imposed<br />

h<strong>and</strong>-turn created a pause <strong>in</strong> workload <strong>and</strong> certa<strong>in</strong>ly <strong>in</strong>duced a variable<br />

VO<br />

·<br />

2 response which would compromise the accuracy of the model us<strong>in</strong>g a<br />

complex set of parameters (Wetherill et al., 1986).<br />

The slow component recorded <strong>in</strong> this study (401.7 ± 129.9<br />

mlO2·m<strong>in</strong>-1 <strong>and</strong> 5.69 ± 1.96 ml·m<strong>in</strong>-1 ·kg-1 ) was equal if not greater than<br />

those reported <strong>in</strong> swimm<strong>in</strong>g at equivalent if not higher <strong>in</strong>tensity of exercise,<br />

but <strong>in</strong> less tra<strong>in</strong>ed swimmers (Bentley et al., 2005; Demarie et al.,<br />

2001; Fern<strong>and</strong>ez et al., 2003). Demarie et al., (2001) reported values of<br />

239 ± 194 mlO2·m<strong>in</strong>-1 when measured <strong>in</strong> six elite pentathletes exercis<strong>in</strong>g<br />

at above critical velocity but below v · VO2 peak (v = 1.22 ± 0.06<br />

m·sec-1 ; tlim =375 ± 38-s ). Fern<strong>and</strong>ez et al., (2008) reported values of<br />

274.11 ± 152.83 mlO2·m<strong>in</strong>-1 for a group of 15 elite swimmers perform<strong>in</strong>g<br />

a test to exhaustion at v · VO2 max (v = 1.46 ± 0.06 m·s-1 ; tlim =260.20<br />

± 60.73-s ) while Bentley et al., (2005) found a slow component (7.7±3.1<br />

mlO2·m<strong>in</strong>-1 ·kg-1 ) only <strong>in</strong> 5 of the 9 elite swimmers tested, when swimm<strong>in</strong>g<br />

at a velocity represent<strong>in</strong>g 25% of the difference between ventilatory<br />

threshold <strong>and</strong> · VO2 max (1.35±0.03 m·s-1 ) for 400-m. One study<br />

(Lucia et al., 1998) reports a slow component of 130 mlO2·m<strong>in</strong>-1 <strong>in</strong> 9<br />

professional road cyclists perform<strong>in</strong>g a 20-m<strong>in</strong> exercise above ventilatory<br />

threshold (~80% · VO2 max; [La]b < 3 mmol·l-1 ). In agreement with the<br />

work reported by Carter et al., 2000, the hypothesis of a cause <strong>and</strong> effect<br />

relationship between the slow component <strong>and</strong> lactate accumulation or<br />

lower pH would not appear to be confirmed by our data s<strong>in</strong>ce our athletes<br />

exhibited low serum lactate levels dur<strong>in</strong>g the IT6*500 sessions (4.1<br />

mmol·l-1 ) but with high slow component. This f<strong>in</strong>d<strong>in</strong>g supports the conclusions<br />

of several researches which associate the slow component with<br />

changes <strong>in</strong> fiber type recruitment pattern (Carter et al., 2000; Gaesser<br />

et Poole, 1996; Whipp, 1996). Indeed, <strong>in</strong> the case of muscle fatigue, additional<br />

motor units or muscles (possibly less efficient) will be recruited<br />

<strong>and</strong> the · VO2 will <strong>in</strong>crease <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> the work rate when power<br />

output of recruited motor unit is reduced. It could be hypothesized that<br />

<strong>in</strong> swimm<strong>in</strong>g such progressive muscular fatigue <strong>in</strong>duces a reduction <strong>in</strong><br />

propulsive efficiency requir<strong>in</strong>g a compensatory <strong>in</strong>crease <strong>in</strong> stroke rate to<br />

ma<strong>in</strong>ta<strong>in</strong> speed <strong>and</strong> consequently a delayed <strong>in</strong>crease <strong>in</strong> oxygen uptake.<br />

198<br />

Moreover high level endurance swimmers are characterized by a strong<br />

capacity to reduce muscle lactate accumulation, so allow<strong>in</strong>g them to<br />

ma<strong>in</strong>ta<strong>in</strong> a high fraction of the · VO 2 max at speeds correspond<strong>in</strong>g to the<br />

lactate threshold. Therefore high ventilatory responses led by the power<br />

of the exercise associated to the <strong>in</strong>spiratory breath<strong>in</strong>g resistance <strong>in</strong>crease<br />

due to the breath<strong>in</strong>g <strong>in</strong> a snorkel contribute certa<strong>in</strong>ly to the amplitude of<br />

the O2SC. Therefore, the characteristics of the slow component observed<br />

<strong>in</strong> the present study (high amplitude A2, long delay Td2, <strong>and</strong> low time<br />

constant π2) could be attributed by both the specificity of swimm<strong>in</strong>g <strong>and</strong><br />

high-level endurance of the swimmers.<br />

conclusIon<br />

Elite Long-distance swimmers atta<strong>in</strong>ed an exceptionally high percent<br />

of · VO 2 max when swimm<strong>in</strong>g at the velocity correspond<strong>in</strong>g to lactate<br />

threshold, with this velocity be<strong>in</strong>g very close to maximal speeds. All of<br />

the swimmers tested exhibited great amplitude of the slow component<br />

<strong>in</strong> their · VO 2 response.<br />

reFerences<br />

Bell C, Paterson DH, Kowalchuk JM, Padilla J, Cunn<strong>in</strong>gham DA<br />

(2001b). A comparison of modell<strong>in</strong>g techniques used to characterise<br />

oxygen uptake k<strong>in</strong>etics dur<strong>in</strong>g the on-transient of exercise. Exp<br />

Physiol, 86(5), 667-676, 2001(b).<br />

Bentley DJ, Roels B, Hellard P, Fauquet C, Libicz S, Millet GP (2005).<br />

Physiological responses dur<strong>in</strong>g submaximal <strong>in</strong>terval swimm<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g:<br />

effects of <strong>in</strong>terval duration. J Sci Med Sport, 8(4), 392-402.<br />

Billat V, Demarle A, Slaw<strong>in</strong>ski J, Paiva M, Koralszte<strong>in</strong> JP (2001). Physical<br />

<strong>and</strong> tra<strong>in</strong><strong>in</strong>g characteristics of top-class marathon runners. Med<br />

Sci Sports Exerc, 33(12), 2089-2097.<br />

Borrani F, C<strong>and</strong>au R, Millet GY, Perrey S, Fuchslocher J, Rouillon JD<br />

(2001). Is the ·VO2 slow component dependent on progressive recruitment<br />

of fast-twitch fibers <strong>in</strong> tra<strong>in</strong>ed runners ? J Appl Physiol,<br />

90(6), 2212-2220.<br />

Carter H, Jones AM, Barstow TJ, Burnley M, Williams C, Doust JH<br />

(2000). Effect of endurance tra<strong>in</strong><strong>in</strong>g on oxygen uptake k<strong>in</strong>etics dur<strong>in</strong>g<br />

treadmill runn<strong>in</strong>g. J Appl Physiol, 89, 1744-1752.<br />

Cheng B., Kuipers H., Snyder A.C., Keizer H.A., Jeukendrup A., Hessel<strong>in</strong>k<br />

M (1992). A new approach for the determ<strong>in</strong>ation of ventilator<br />

<strong>and</strong> lactate thresholds. Int J Sports Med, 13, 518-522.<br />

Costill DL, Maglischo EW, Richardson AB. Swimm<strong>in</strong>g, Blackwell Science<br />

LTD, 1992.<br />

Demarie S, Sardella F, Billat V, Mag<strong>in</strong>i W, Fa<strong>in</strong>a M (2001). The ·VO2<br />

slow component <strong>in</strong> swimm<strong>in</strong>g. Eur J Appl Physiol 84, 95-99.<br />

Fern<strong>and</strong>es RJ, Cardoso CS, Soares SM, Ascensao A, Colaco PJ, Vilas-<br />

Boas JP (2003). Time limit <strong>and</strong> VO2 slow component at <strong>in</strong>tensities<br />

correspond<strong>in</strong>g to VO2max <strong>in</strong> swimmers. Int J Sports Med, 24(8),<br />

576-581.<br />

Gaesser GA, Poole DC (1996). The slow component of oxygen k<strong>in</strong>etics<br />

<strong>in</strong> human. Exerc. Sports Sc Rev, 24, 35-71.<br />

Krustrup P, Soderlund K, Mohr M, Bangsbo J (2004). The slow component<br />

of oxygen uptake dur<strong>in</strong>g <strong>in</strong>tense, sub-maximal exercise <strong>in</strong> man<br />

is associated with additional fibre recruitment. Pflugers Arch, 447(6),<br />

855-866.<br />

Lucia A, Pardo J, Durantez A, Hoyos J, Chicharro JL (1998). Physiological<br />

differences between professional <strong>and</strong> elite road cyclists. Int J<br />

Sports Med, 19(5), 342-348.<br />

Mahood NV, Kenefick RW, Kertzer R, Qu<strong>in</strong>n TJ (2001). Physiological<br />

determ<strong>in</strong>ants of cross-country ski rac<strong>in</strong>g performance. Med Sci<br />

Sports Exerc, 33(8), 1379-1384.<br />

Wetherill GB, Duncombe P, Kenward M. Regression analysis with applications.<br />

London,New York; 1986. p. 82-86; 102-104; 180-182;<br />

226-227; 240-246.<br />

Whipp BJ. Doma<strong>in</strong>s of aerobic function <strong>and</strong> their limit<strong>in</strong>g parameters.<br />

The Physiology <strong>and</strong> Pathophysiology of Exercise Tolerance, edited by<br />

Ste<strong>in</strong>acker <strong>and</strong> Ward. Plenum Press, New York, 1996.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!