16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

highly significant correlation between the y-<strong>in</strong>tercept <strong>and</strong> the residual<br />

error obta<strong>in</strong>ed from the relationship between 1500-m performance <strong>and</strong><br />

CV <strong>in</strong> F<strong>in</strong>-swimm<strong>in</strong>g. These f<strong>in</strong>d<strong>in</strong>gs from previous <strong>and</strong> present studies<br />

suggest that the y-<strong>in</strong>tercept of a regression l<strong>in</strong>e between D <strong>and</strong> T <strong>in</strong><br />

competitive swimm<strong>in</strong>g is a valuable <strong>in</strong>dex of anaerobic capacity that can<br />

be therefore assessed us<strong>in</strong>g a non-<strong>in</strong>vasive method.<br />

The f<strong>in</strong>d<strong>in</strong>gs of this study suggest that apply<strong>in</strong>g the CV concept<br />

<strong>in</strong> swimm<strong>in</strong>g would enable both aerobic <strong>and</strong> anaerobic capacities to be<br />

evaluated at once without us<strong>in</strong>g <strong>in</strong>vasive methods or expensive equipment.<br />

Thus, it would provide a simple <strong>and</strong> effective tool for coaches <strong>and</strong><br />

swimmers <strong>in</strong> the field.<br />

conclusIon<br />

The y-<strong>in</strong>tercept of the D-T relationship <strong>in</strong> swimm<strong>in</strong>g is significantly<br />

correlated with various <strong>in</strong>dices of anaerobic capacity, such as the highest<br />

[La], the mean <strong>and</strong> peak power of the WAnT. From these results, it is<br />

suggested that the y-<strong>in</strong>tercept of a regression l<strong>in</strong>e <strong>in</strong> the critical velocity<br />

concept could represent a good <strong>in</strong>dex of anaerobic capacity, determ<strong>in</strong>able<br />

without any <strong>in</strong>vasive measurements.<br />

reFerences<br />

Bar-Or, O. (1987). The W<strong>in</strong>gate anaerobic test. An update on methodology,<br />

reliability <strong>and</strong> validity. Sports Med 4(6), 381-94.<br />

Bosquet, L., Leger, L. & Legros P. (2002). Methods to determ<strong>in</strong>e aerobic<br />

endurance. Sports Med 32(11), 675-700.<br />

Dekerle, J., Sidney, M., Hespel, J.M. & Pelayo P. (2002). Validity <strong>and</strong><br />

reliability of critical speed, critical stroke rate, <strong>and</strong> anaerobic capacity<br />

<strong>in</strong> relation to front crawl swimm<strong>in</strong>g performances. Int J Sports Med<br />

23(2), 93-8.<br />

di Prampero, P.E., Dekerle, J., Capelli, C. & Zamparo P. (2008). The<br />

critical velocity <strong>in</strong> swimm<strong>in</strong>g. Eur J Appl Physiol 102(2), 165-71.<br />

Hawley, J.A., Williams, M.M., Vickovic, M.M. & H<strong>and</strong>cock PJ. (1992).<br />

Muscle power predicts freestyle swimm<strong>in</strong>g performance. Br J Sports<br />

Med 26(3), 151-5.<br />

Lacour, J.R., Bouvat, E. & Barthelemy, J.C. (1990). Post-competition<br />

blood lactate concentrations as <strong>in</strong>dicators of anaerobic energy expenditure<br />

dur<strong>in</strong>g 400-m <strong>and</strong> 800-m races. Eur J Appl Physiol Occup<br />

Physiol 61(3-4), 172-6.<br />

Maglischo, E.W. (2003). Swimm<strong>in</strong>g fastest. Champaign: Human K<strong>in</strong>etics.<br />

Mart<strong>in</strong>, L. & Whyte GP. (2000). Comparison of critical swimm<strong>in</strong>g velocity<br />

<strong>and</strong> velocity at lactate threshold <strong>in</strong> elite triathletes. Int J Sports<br />

Med 21(5), 366-8.<br />

Miura, A., Endo, M., Sato, H., Sato, H., Barstow, T.J. & Fukuba Y.<br />

(2002). Relationship between the curvature constant parameter of the<br />

power-duration curve <strong>and</strong> muscle cross-sectional area of the thigh for<br />

cycle ergometry <strong>in</strong> humans. Eur J Appl Physiol 87(3), 238-44.<br />

Monod, H. & Scherrer, J. (1965). The work capacity of synergic muscle<br />

group. Ergonomics 8, 329-38.<br />

Ogita, F., Hara, M. & Tabata I. (1996). Anaerobic capacity <strong>and</strong> maximal<br />

oxygen uptake dur<strong>in</strong>g arm stroke, leg kick<strong>in</strong>g <strong>and</strong> whole body swimm<strong>in</strong>g.<br />

Acta Physiol Sc<strong>and</strong> 157(4), 435-41.<br />

Oshita, K., Ross, M., Koizumi, K., Kashimoto, S., Yano, S., Takahashi,<br />

K. & Kawakami, M. (2009). The critical velocity <strong>and</strong> 1500-m surface<br />

performances <strong>in</strong> F<strong>in</strong>swimm<strong>in</strong>g. Int J Sports Med 30(8), 598-601.<br />

V<strong>and</strong>ewalle, H., Kapitaniak, B., Grun, S., Raveneau, S. & Monod H.<br />

(1989). Comparison between a 30-s all-out test <strong>and</strong> a time-work test<br />

on a cycle ergometer. Eur J Appl Physiol Occup Physiol 58(4), 375-81.<br />

V<strong>and</strong>ewalle, H., Vautier, J.F., Kachouri, M., Lechevalier, J.M. & Monod,<br />

H. (1997). Work-exhaustion time relationships <strong>and</strong> the critical power<br />

concept. A critical review. J Sports Med Phys Fitness 37(2), 89-102.<br />

Wakayoshi, K., Ikuta, K., Yoshida, T., Udo, M., Moritani, T., Mutoh,<br />

Y. & Miyashita, M. (1992). Determ<strong>in</strong>ation <strong>and</strong> validity of critical<br />

290<br />

velocity as an <strong>in</strong>dex of swimm<strong>in</strong>g performance <strong>in</strong> the competitive<br />

swimmer. Eur J Appl Physiol Occup Physiol 64(2), 153-7.<br />

Wakayoshi, K., Yoshida, T., Udo, M., Harada, T., Moritani, T., Mutoh,<br />

Y. & Miyashita M. (1993). Does critical swimm<strong>in</strong>g velocity represent<br />

exercise <strong>in</strong>tensity at maximal lactate steady state? Eur J Appl Physiol<br />

Occup Physiol 66(1), 90-5.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!