16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

recruitment of fast-twitch fibers <strong>in</strong> tra<strong>in</strong>ed runners? J Appl Physiol,<br />

90(6),2212-20.<br />

Carter H., Jones A.M., Barstow T.J., Burnley M., Williams C.A., Doust<br />

J.H. (2000). Oxygen uptake k<strong>in</strong>etics <strong>in</strong> treadmill runn<strong>in</strong>g <strong>and</strong> cycle<br />

ergometry: a comparison. J Appl Physiol, 89, 899-907.<br />

Carter H., Pr<strong>in</strong>gle J.S., Jones A.M., Doust J.A. (2002). Oxygen uptake<br />

k<strong>in</strong>etics dur<strong>in</strong>g treadmill runn<strong>in</strong>g across exercise <strong>in</strong>tensity doma<strong>in</strong>s.<br />

Eur J Appl Physiol, 86, 347-354.<br />

Davison, R.C., Someren, K.A., Jones A.M. (2009). Physiological<br />

monitor<strong>in</strong>g of the Olympic athlete. J Sports Sci, DOI:<br />

10.1080/02640410903045337.<br />

Demarie, S., Sardella, F., Billat, V., Mag<strong>in</strong>i, W., Fa<strong>in</strong>a, M. (2001) The<br />

VO 2 slow component <strong>in</strong> swimm<strong>in</strong>g. Eur J Appl Physiol, 84, 95-99.<br />

Fern<strong>and</strong>es R.J., Kesk<strong>in</strong>en K.L., Colaço P., Querido A.J., Machado L.J.,<br />

Morais P.A., Novais D.Q., Mar<strong>in</strong>ho D.A., Vilas Boas J.P. (2008).<br />

Time Limit at VO 2 max Velocity <strong>in</strong> Elite Crawl Swimmers. Int J<br />

Sports Med , 29, 145–50.<br />

Ingham S.A., Carter H., Whyte G., Doust J.H. (2007). Comparison of<br />

the oxygen uptake k<strong>in</strong>etics of Club <strong>and</strong> Olympic champion rowers.<br />

Med Sci Sports Exerc, 39(5), 865-71.<br />

Jones A.M., Koppo K. (2005). Effect of tra<strong>in</strong><strong>in</strong>g on O 2 k<strong>in</strong>etics <strong>and</strong> performance.<br />

In: Jones AM & Poole DC, editors. Oxygen Uptake K<strong>in</strong>etics<br />

<strong>in</strong> Sport, Exercise <strong>and</strong> <strong>Medic<strong>in</strong>e</strong>. Oxon: Routledge, p. 373-398.<br />

Koga S., Tomoyuki S., Kondo N., Barstow T. (1997). Effect of <strong>in</strong>creased<br />

muscle temperature on oxygen uptake k<strong>in</strong>etics dur<strong>in</strong>g exercise. J Appl<br />

Physiol,83(4), 1333-8.<br />

Poole D.C., Ward S.A., Gardner G.W., Whipp B.J. (1988). Metabolic<br />

<strong>and</strong> respiratory profile of the upper limit for prolonged exercise <strong>in</strong><br />

man. Ergonomics, 31, 1265–1279.<br />

Reis J.F., Millet G.P., Malatesta D., Roels B., Borrani F., Vleck V.E.,<br />

Alves F.B. (2010). Are oxygen uptake k<strong>in</strong>etics modified when us<strong>in</strong>g a<br />

respiratory snorkel? Int J Sports Physiol Perform, <strong>in</strong> press.<br />

Rodriguez F., Kesk<strong>in</strong>en K., Malvela M., Kesk<strong>in</strong>en O. (2003).<br />

Oxygen uptake k<strong>in</strong>etics <strong>in</strong> free swimm<strong>in</strong>g- a pilot study. In<br />

Chatard JC (eds). <strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g IX,<br />

Sa<strong>in</strong>t Etienne, Publications de l’Université de Sa<strong>in</strong>t-Etienne, 379-<br />

384.<br />

W<strong>in</strong>love M.A., Jones A.M., Welsman J.R. (2010) Influence of tra<strong>in</strong><strong>in</strong>g<br />

status <strong>and</strong> exercise modality on pulmonary O 2 uptake k<strong>in</strong>etics <strong>in</strong><br />

pre-pubertal girls. Eur J Appl Physiol , DOI: 10.1007/s00421-009-<br />

1320-2.<br />

ACKNOWLEDGEMENTS<br />

The first author gratefully acknowledges the ‘Fundação para a Ciência<br />

e Tecnologia, Portugal’ (‘The Foundation for Science <strong>and</strong> Technology’)<br />

for their doctoral fellowship award (reference number SFRH/<br />

BD/23351/2005).<br />

222<br />

Maximum Blood Lactate Concentration after two<br />

Different Specific Tests <strong>in</strong> Freestyle Swimm<strong>in</strong>g<br />

rozi, G. 1 , Thanopoulos, V. 1 , dopsaj, M. 2<br />

1Faculty of Physical Education <strong>and</strong> Sports Science, University of Athens,<br />

Greece<br />

2Faculty of Sport <strong>and</strong> Physical Education, University of Belgrade, Serbia<br />

The purpose of the present study was to compare the blood lactate concentrations<br />

after two tests of maximal <strong>in</strong>tensity: a) 2x100 freestyle swimm<strong>in</strong>g<br />

<strong>and</strong> b) 4x50m freestyle. Eight competitive swimmers participated<br />

<strong>in</strong> this study. Capillary blood samples were obta<strong>in</strong>ed the 3rd, 5th <strong>and</strong> 7th<br />

m<strong>in</strong> after the end of each test. Analysis of the results showed that there<br />

is a statistically significant correlation between the lactate concentration<br />

<strong>in</strong> the test of 2x100 <strong>and</strong> 4x50m freestyle swimm<strong>in</strong>g only for females<br />

(r=0.871). Moreover, no statistical significance was observed between<br />

the test of 4x50 or 2x100 concern<strong>in</strong>g lactic acid accumulation between<br />

male <strong>and</strong> female. The results obta<strong>in</strong>ed showed that the tested female<br />

swimmers swam at 4x50m more efficiently than their male counterparts.<br />

Key words: Freestyle swimm<strong>in</strong>g, maximum lactate concentration,<br />

gender<br />

IntroductIon<br />

Lactic acid constitutes a useful tool for the determ<strong>in</strong>ation of anaerobic<br />

capacity for researchers <strong>and</strong> tra<strong>in</strong>ers. The highest lactate levels have<br />

been recorded follow<strong>in</strong>g the swimm<strong>in</strong>g distances of 100 <strong>and</strong> 200 meters<br />

(Avlonitou 1996). The energy cost of swimm<strong>in</strong>g has been found<br />

to dependent on the drag of the athlete, efficiency of stroke mechanics<br />

<strong>and</strong> velocity of movement through the water. Competitive swimm<strong>in</strong>g<br />

requires <strong>in</strong>tense activity from a large muscle mass. This requirement favours<br />

<strong>in</strong>volvement of anaerobic energy release with the subsequent accumulation<br />

of lactate <strong>in</strong> the blood.<br />

The measurement of blood lactate concentration has become a<br />

common practice of swimm<strong>in</strong>g coaches for performance diagnosis<br />

<strong>and</strong> tra<strong>in</strong><strong>in</strong>g control <strong>in</strong> competitive swimm<strong>in</strong>g over the last few years<br />

(Pelayo et al. 1996; Avlonitou, E. 1996). For researchers <strong>and</strong> coaches,<br />

lactic acid constitutes a useful implement for the determ<strong>in</strong>ation of anaerobic<br />

capacity. Lactic acid is a useful marker of anaerobic capacity for<br />

researchers <strong>and</strong> tra<strong>in</strong>ers. Considerable emphasis has been given to the<br />

measurement of blood lactate dur<strong>in</strong>g sub-maximal <strong>and</strong> maximal swimm<strong>in</strong>g<br />

efforts. Muscle lactic levels are between 1 – 2 mmol/l <strong>in</strong> the blood<br />

dur<strong>in</strong>g rest <strong>and</strong> can <strong>in</strong>crease to between 10 -20 mmol/l dur<strong>in</strong>g all out<br />

effort (Maglischo 2003). The distances that are used to measure maximum<br />

lactic acid accumulation are 100m or 200m (Avlonitou, E. 1996).<br />

As a result, for the maximum production of lactic acid, efforts of 1 to 2<br />

m<strong>in</strong>utes of full <strong>in</strong>tensity are required. Rate of lactic acid production <strong>in</strong><br />

muscle fibers depends on swimm<strong>in</strong>g speed, rate of oxygen consumption<br />

<strong>and</strong> type of muscle fiber (Maglischo 2003). There is much <strong>in</strong>terest<br />

concern<strong>in</strong>g difference <strong>in</strong> blood lactate accumulation level <strong>in</strong> male <strong>and</strong><br />

female swimmers.<br />

Indeed, several studies have used the relationship between blood lactate<br />

concentration <strong>and</strong> swimm<strong>in</strong>g velocity to determ<strong>in</strong>e the appropriate<br />

exercise <strong>in</strong>tensities dur<strong>in</strong>g competition (Sawka et al. 1979; Chatard<br />

et al. 1988) or tra<strong>in</strong><strong>in</strong>g <strong>and</strong> to gauge swimmers adaptation to tra<strong>in</strong><strong>in</strong>g<br />

programs (Mader et al. 1978; Kesk<strong>in</strong>en et al. 1989; Ryan et al. 1990;<br />

Costill 1992).<br />

In their attempt to improve competition performance, swimmers<br />

perform large volumes <strong>and</strong>/or high <strong>in</strong>tensities of tra<strong>in</strong><strong>in</strong>g with, sometimes,<br />

<strong>in</strong>sufficient time to recover between workouts (Pelayo et al. 1996).<br />

There is little <strong>in</strong>formation for the comparison of different maximum<br />

efforts <strong>in</strong> order to determ<strong>in</strong>e the most adequate tra<strong>in</strong><strong>in</strong>g method for<br />

maximal accumulation <strong>and</strong> tolerance of lactic acid.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!