16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

functional model (form<strong>in</strong>g an isolated sequence) leads to the appearance<br />

of reserves <strong>in</strong> swimm<strong>in</strong>g technique, support<strong>in</strong>g the achievement of<br />

maximum swimm<strong>in</strong>g speed (Rejman <strong>and</strong> Ochmann, 2009).<br />

Due to optimal mutual actions of the feet, tail <strong>and</strong> the parts of the<br />

f<strong>in</strong> with speed, the formation of vortices occurs. These become an additional<br />

source of propulsion. Stable vortex circulation creates additional<br />

momentum due to velocity changes of water mass, produced by the<br />

rotational velocity of the vortex (Colman et al., 1999). It seems that<br />

the efficient transfer of torque over the surface of the f<strong>in</strong>, no matter<br />

if directly from leg movements, is subord<strong>in</strong>ated to the hydrodynamic<br />

conditions of water flow over the surface of the f<strong>in</strong>. In this aspect, the<br />

dynamic transfer system, displayed as changes to the angle of attack of<br />

the monof<strong>in</strong>, changes the structure of water flow over its surface, <strong>and</strong><br />

appears to be a key to effective swimm<strong>in</strong>g. The results obta<strong>in</strong>ed correspond<br />

to the analysis of particular components of force generated on<br />

the surface of the f<strong>in</strong>, with respect to the change <strong>in</strong> <strong>in</strong>tracycle velocity<br />

(Colman et al., 1999; Rejman et al., 2006) (Table 2 - B, D) – <strong>in</strong> extreme<br />

upper <strong>and</strong> lower feet position, where the legs are straight at the ankle<br />

jo<strong>in</strong>t, the monof<strong>in</strong> bends at the tail, <strong>and</strong> its midsection is placed parallel<br />

to the direction of swimm<strong>in</strong>g. The research cited <strong>in</strong>dicates that the ma<strong>in</strong><br />

source of propulsion <strong>in</strong> this part of the cycle are drag <strong>and</strong> lift forces as<br />

well as accompany<strong>in</strong>g components due to vortex <strong>in</strong>duced momentum<br />

<strong>and</strong> the flexion of the f<strong>in</strong>. These same authors believe that ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

the velocity cited, plays a ma<strong>in</strong> role <strong>in</strong> plac<strong>in</strong>g the distal part of the f<strong>in</strong><br />

parallel to the direction of swimm<strong>in</strong>g (Table 2 – (A, C) - maximum<br />

bend of the distal part <strong>and</strong> entire surface of the f<strong>in</strong>, dur<strong>in</strong>g change of<br />

direction of edge movement). In the sequences described, the energy<br />

essential to swimmer propulsion emanates from both additional mass<br />

slides away from the edge <strong>and</strong> acceleration reaction.<br />

The diagnostic value of the parameters analyzed was confirmed <strong>in</strong> an<br />

earlier constructed model of functional swimm<strong>in</strong>g <strong>and</strong> monof<strong>in</strong> technique<br />

(Rejman <strong>and</strong> Ochmann, 2009). It was also confirmed that, the<br />

greater the <strong>in</strong>fluence of the parameter on swimm<strong>in</strong>g speed, the more difficult<br />

the performance of proper movement <strong>in</strong> relation to this parameter.<br />

The errors <strong>in</strong>dicated concern the fragments, which registered the highest<br />

<strong>in</strong>tracycle velocity (confirmed by correlation coefficients (Table 1)) suggest<strong>in</strong>g<br />

that, the achievement of maximum <strong>in</strong>tracycle speed, is a consequence<br />

of proper execution of the determ<strong>in</strong>ant sequence of movement.<br />

No difference was demonstrated <strong>in</strong> terms of the change <strong>in</strong> angular foot<br />

movement, <strong>in</strong> subjectively <strong>in</strong>terpreted conditions, ensu<strong>in</strong>g from fatigue<br />

dur<strong>in</strong>g swimm<strong>in</strong>g of subsequent distances of the trial. Therefore, there is<br />

a basis for the objective evaluation of the reliability of the errors, which<br />

occurred. The procedures outl<strong>in</strong><strong>in</strong>g determ<strong>in</strong>ant sequences, on the basis<br />

of errors analyzed, create an empirical foundation for treat<strong>in</strong>g this sequence<br />

as a tool for evaluat<strong>in</strong>g monof<strong>in</strong> swimm<strong>in</strong>g technique (Table 2).<br />

conclusIon<br />

Precise control of foot movement, alows for achiev<strong>in</strong>g a dynamic system<br />

transferr<strong>in</strong>g torque, as a basis of propulsion, which creates momentum,<br />

bend<strong>in</strong>g the tail of the f<strong>in</strong> dur<strong>in</strong>g transfer, thus chang<strong>in</strong>g the shape of the<br />

f<strong>in</strong> <strong>and</strong> the structure of water flow over its surface. This same proper sequence<br />

of propulsive movement creates conditions for us<strong>in</strong>g the surface<br />

of the monof<strong>in</strong> to achieve maximum speeds. Therefore, it is justified to<br />

assign key elements to monof<strong>in</strong> swimm<strong>in</strong>g technique, for the quantification<br />

of its quality, <strong>and</strong> for the anticipation <strong>and</strong> elim<strong>in</strong>ation of errors<br />

dur<strong>in</strong>g the technical tra<strong>in</strong><strong>in</strong>g.<br />

reFerences<br />

Colman V, Persyn U, Ungerechts BE. (1999). A mass of water added to<br />

swimmer’s mass to estimate the velocity <strong>in</strong> dolph<strong>in</strong>-like swimm<strong>in</strong>g<br />

bellow the water surface. <strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> of Swimm<strong>in</strong>g<br />

VIII. Kesk<strong>in</strong>en K, Komi P, Holl<strong>and</strong>er A. (eds.). Gummerus Pr<strong>in</strong>t<strong>in</strong>g,<br />

Jyvaskyla, (pp) 89 - 94.<br />

Persyn U, Colman V, Zhu JP. (1997). Scientific concept <strong>and</strong> educational<br />

transfer <strong>in</strong> undulat<strong>in</strong>g competitive strokes <strong>in</strong> Belgium. Koelner<br />

162<br />

Schwimmsporttage 1996, Sport-Fahnemann-Verlag, Boikenem, (pp<br />

34-40).<br />

Rejman M, Ochmann B. (2009). Model<strong>in</strong>g of monof<strong>in</strong> swimm<strong>in</strong>g technique:<br />

optimization of feet displacement <strong>and</strong> f<strong>in</strong> stra<strong>in</strong>. J.Applied Biomech,<br />

25: 340-350<br />

Rejman, M. (2006). Influenc<strong>in</strong>g of tim<strong>in</strong>g delay on monof<strong>in</strong> <strong>in</strong>tra-cycle<br />

swimm<strong>in</strong>g velocity. Vilas-Boas JP, Alves F, Marques A. (eds.). <strong>Biomechanics</strong><br />

<strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g X. Portuguese Journal of Sport<br />

Sciences, 85–88.<br />

Richard A Schmidt RA Lee T. (2005). Motor control <strong>and</strong> learn<strong>in</strong>g. a behavioral<br />

emphasis - 4th Edition. Champaign: Human K<strong>in</strong>etics.<br />

Shup<strong>in</strong>g L <strong>and</strong> S<strong>and</strong>ers R. (2002). Mechanical properties of the f<strong>in</strong>.<br />

Scientific Proceed<strong>in</strong>gs of XX International Symposium on Biomechanice<br />

<strong>in</strong> Sports. Gianikellis K. (eds.) Caceres, (pp) 479-481.<br />

Wu Yao-Tsu T. (1971). Hydrodynamics of swimm<strong>in</strong>g propulsion. Part<br />

1. Swimm<strong>in</strong>g of a two-dimensional flexible plate at variable forward<br />

speeds <strong>in</strong> an <strong>in</strong>viscid fluid. J. Fluid Mech. 46, 337-355.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!