16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Biomechanics</strong><strong>and</strong>medic<strong>in</strong>e<strong>in</strong>swimm<strong>in</strong>gXi<br />

Dekerle, J., Nesi, X., Lefevre, T., Depretz, S., Sidney, M., March<strong>and</strong>,<br />

F.H., Pelayo, P. (2005a). Strok<strong>in</strong>g parameters <strong>in</strong> front crawl swimm<strong>in</strong>g<br />

<strong>and</strong> maximal lactate steady state speed. Int J Sports Med; 26,<br />

53-58.<br />

Dekerle, J., Pelayo, P., Clipet, B., Depretz, S., Lefevre, T., Sidney, M.<br />

(2005b). Critical swimm<strong>in</strong>g speed does not represent the speed at<br />

maximal lactate steady state. Int J Sports Med; 26 (7), 524-530.<br />

Dekerle, J., Sidney, M., Hespel, J.M., Pelayo, P. (2002). Validity <strong>and</strong> reliability<br />

of critical speed, critical stroke rate, <strong>and</strong> anaerobic capacity<br />

<strong>in</strong> relation to front crawl swimm<strong>in</strong>g performances. Int J Sports Med;<br />

23, 93-98.<br />

di Prampero, P.E. (1999). The concept of critical velocity: a brief analysis.<br />

Eur J Appl Physiol Occup Physiol; 80 (2), 162-164.<br />

di Prampero, P.E., Dekerle, J., Capelli, C., Zamparo, P. (2008). The critical<br />

velocity <strong>in</strong> swimm<strong>in</strong>g. Eur J Appl Physiol; 102 (2),165-171.<br />

Lavoie, J.M. <strong>and</strong> Leone, M. (1988). Functional maximal aerobic power<br />

<strong>and</strong> prediction of swimm<strong>in</strong>g performances. J. Swimm<strong>in</strong>g Research; 4<br />

(4), 17-19.<br />

Mart<strong>in</strong>, L. <strong>and</strong> Whyte, G.P. (2000). Comparison of critical swimm<strong>in</strong>g<br />

velocity <strong>and</strong> velocity at lactate threshold <strong>in</strong> elite triathletes. Int J<br />

Sports Med; 21 (5), 366-368.<br />

Morton, R.H. (2006). The critical power <strong>and</strong> related whole-body bioenergetic<br />

models. Eur J Appl Physiol, 96 (4), 339-354.<br />

Poole, D.C., Ward, S.A., Gardner, G.W., Whipp, B.J. (1988). A metabolic<br />

<strong>and</strong> respiratory profile of the upper limit for prolonged exercise<br />

<strong>in</strong> man. Ergonomics; 31, 1265-1279.<br />

Pr<strong>in</strong>gle, J.S. <strong>and</strong> Jones, A.M. (2002). Maximal lactate steady state, critical<br />

power <strong>and</strong> EMG dur<strong>in</strong>g cycl<strong>in</strong>g. Eur J Appl Physiol; 88, 214-226.<br />

Reis, J. <strong>and</strong> Alves, F. (2006). Tra<strong>in</strong><strong>in</strong>g <strong>in</strong>duced changes <strong>in</strong> critical velocity<br />

<strong>and</strong> V4 <strong>in</strong> age group swimmers. In: Vilas-Boas, J.P., Alves, F.<br />

<strong>and</strong> Marques, A. (eds.). <strong>Biomechanics</strong> <strong>and</strong> <strong>Medic<strong>in</strong>e</strong> <strong>in</strong> Swimm<strong>in</strong>g X.<br />

Portuguese Journal of Sport Sciences; Porto, 311-313.<br />

Toubekis, A.G., Tsami, A.P., Tokmakidis, S.P. (2006). Critical velocity<br />

<strong>and</strong> lactate threshold <strong>in</strong> young swimmers. Int J Sports Med; 27<br />

(2),117-123.<br />

Wakayoshi, K., Yoshida, T., Udo, M., Kasai, T., Moritani, T., Mutoh,<br />

Y., Miyashita, M. (1992). A simple method for determ<strong>in</strong><strong>in</strong>g critical<br />

speed as swimm<strong>in</strong>g fatigue threshold <strong>in</strong> competitive swimm<strong>in</strong>g. Int J<br />

Sports Med; 13, 367-371.<br />

Wakayoshi, K., Yoshida, T., Udo, M., Harada, T., Moritani, T., Mutoh,<br />

Y., Miyashita, M. (1993). Does critical swimm<strong>in</strong>g velocity represent<br />

exercise <strong>in</strong>tensity at maximal lactate steady state? Eur J Appl Physiol<br />

Occup Physiol; 66, 90-95.<br />

AcKnoWledGeMents<br />

The first author gratefully acknowledges the ‘Fundação para a Ciência e<br />

Tecnologia, Portugal’ (‘The Foundation for Science <strong>and</strong> Technology’) for<br />

their doctoral fellowship award (SFRH/BD/41417/2007).<br />

196<br />

Modell<strong>in</strong>g the VO 2 Slow Component <strong>in</strong> Elite Long<br />

Distance Swimmers at the Velocity Associated with<br />

Lactate Threshold<br />

hellard, P. 1, 4 , dekerle, J. 2 , nesi, X. 2 , toussa<strong>in</strong>t, J.F. 4 , houel, n.<br />

1 , hausswirth, c. 3<br />

1Département recherche, Fédération Française de Natation, Paris France<br />

2Chelsea School, University of Brighton, Engl<strong>and</strong><br />

3Département des Sciences du Sport, INSEP, Paris, France<br />

4Institut de recherche en médec<strong>in</strong>e et en épidémiologie du sport, IRMES,<br />

Paris, France<br />

Seven elite male long-distance swimmers (Mean ± SD, age 21.4 ± 3.5<br />

yrs; weight 71 ± 5 kg ; height 180 ± 5 cm) participated <strong>in</strong> two experimental<br />

tests performed dur<strong>in</strong>g a one-week period. The first test consisted<br />

<strong>in</strong> a 6 x 300-m <strong>in</strong>cremental swimm<strong>in</strong>g exercise performed to exhaustion<br />

<strong>in</strong> order to determ<strong>in</strong>e lactate threshold (LT = 3.1 ± 1.2 mmol·L -1 ),<br />

<strong>and</strong> the velocity associated with LT (v LT = 1.45 ± 0.01 m·sec-1 = 97.3 ±<br />

5.6% of v · VO2 max ). The parameters of the · VO2 k<strong>in</strong>etics were calculated<br />

dur<strong>in</strong>g a 500-m <strong>in</strong>terval swum at v LT us<strong>in</strong>g a two- <strong>and</strong> one-term<br />

exponential model. The fit was statistically superior for the two-term<br />

model (r²= 0.62 ± 0.18 vs. 0.52 ± 0.21, P < 0.01). A slow component (A2 = 401.7 ± 129.9 ml·m<strong>in</strong>·kg -1 , Td 2 = 189.7 ± 63.3 s, 2<br />

τ = 64.5 ± 114.4 s)<br />

can be observed <strong>in</strong> elite male long-distance swimmers swimm<strong>in</strong>g at submaximal<br />

<strong>in</strong>tensities (vLT; 96.7 ± 0.5% of v · VO 2 max ).<br />

Key words: lactate threshold, Vo 2 k<strong>in</strong>etics, long distance swimmers,<br />

model<strong>in</strong>g<br />

IntroductIon<br />

The lactate threshold has been shown to represent an essential factor<br />

of high-level performance <strong>in</strong> endurance sports (marathon, Nordic ski<strong>in</strong>g,<br />

triathlon, cycl<strong>in</strong>g; Billat et al., 2001; Mahood et al., 2001). With<br />

tra<strong>in</strong><strong>in</strong>g, a reduction <strong>in</strong> blood lactate accumulation for a given <strong>in</strong>tensity<br />

would be the result of lower lactate production <strong>and</strong>/or <strong>in</strong>creased lactate<br />

clearance (Billat et al., 2001, Mahood et al., 2001) associated with lower<br />

energy cost (Billat et al., 2001).<br />

The oxygen response to constant load exercise can be characterized<br />

by three transient phases. Phase I is a rapid early rise <strong>in</strong> · VO 2 (last<strong>in</strong>g 15-<br />

30-s) <strong>and</strong> represents the circulatory transit delay between the exercis<strong>in</strong>g<br />

muscle <strong>and</strong> lungs (Whipp, 1996). Follow<strong>in</strong>g the phase I response, the<br />

phase II rise <strong>in</strong> · VO 2 is best characterized as an exponential function that<br />

atta<strong>in</strong>s a steady state with<strong>in</strong> 2-3 m<strong>in</strong>. If the <strong>in</strong>tensity of the exercise is<br />

performed above the lactate threshold a slowly develop<strong>in</strong>g component<br />

of <strong>in</strong>creas<strong>in</strong>g · VO 2 (termed the slow component of O2 uptake k<strong>in</strong>etics)<br />

can be observed (Gaesser et Poole, 1996). Cont<strong>in</strong>uous exercise performed<br />

at the lactate threshold is also thought to reduce the amplitude<br />

of the slow component after a period of tra<strong>in</strong><strong>in</strong>g (Carter et al., 2000;<br />

Gaesser et Poole, 1996; Whipp, 1996). The · VO 2 slow component appears<br />

to be more frequent among athletes hav<strong>in</strong>g a high fractional · VO 2<br />

at the lactate threshold (Billat, 2001) which is typical of ultra-endurance<br />

athletes (Billat et al., 2001; Lucia et al., 1998; Mahood et al., 2001). In<br />

high-level long-distance swimmers, it is hypothesized that a long swimm<strong>in</strong>g<br />

<strong>in</strong>terval <strong>in</strong>duces a greater slow component of · VO 2 .<br />

Methods<br />

Seven elite long-distance male swimmers participated <strong>in</strong> this study.<br />

Their performances over a 800-, 1500-, <strong>and</strong> 5000-meter front crawl test<br />

(V800, V1500, V5000) were recorded. They are expressed <strong>in</strong> percentage<br />

of the world record <strong>in</strong> Table 1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!