16.11.2012 Views

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

Biomechanics and Medicine in Swimming XI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

¾<br />

¾<br />

¾<br />

Methods<br />

A three-dimensional model of the f<strong>in</strong>-water system is proposed which<br />

is built on the follow<strong>in</strong>g assumptions. Based on cont<strong>in</strong>uum theory, a<br />

fluid-structure <strong>in</strong>teraction is developed with <strong>in</strong>ertial coupl<strong>in</strong>g. The system<br />

is depicted <strong>in</strong> Figure 1 <strong>and</strong> is composed of a solid doma<strong>in</strong> (ΩS )<br />

coupled with a surround<strong>in</strong>g fluid doma<strong>in</strong> (ΩF ). The boundary (Γ) ¾<br />

corresponds to the deformable fluid-structure <strong>in</strong>terface. The external<br />

excitation for the stroke motion (i.e. the rate of undulation) ¾ is assumed<br />

to be lower than the wave speed ¾ <strong>in</strong> the f<strong>in</strong>, so that the fluid can be ¾ de-<br />

¾<br />

scribed with the acoustic pressure (Mor<strong>and</strong> <strong>and</strong> Ohayon, 1995). It corresponds<br />

to an undulatory type of low frequency swimm<strong>in</strong>g. The f<strong>in</strong> is<br />

assumed to be a deformable elastic structure. Namely, the monof<strong>in</strong> is<br />

modelled us<strong>in</strong>g a multilayer structure, whose constitutive law is written<br />

by means of the Cauchy stress tensorσ<br />

. The imposed k<strong>in</strong>ematics at the<br />

lead<strong>in</strong>g edge of the monof<strong>in</strong> (that corresponds to the swimmer’s ankle)<br />

results <strong>in</strong> a volume force γ ie. If we denote by u the displacement field of<br />

the monof<strong>in</strong> <strong>and</strong> p pressure field with<strong>in</strong> the fluid doma<strong>in</strong>, the problem<br />

consists <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g (u,p) solutions of the follow<strong>in</strong>g three-dimensional<br />

¾<br />

boundary value problem:<br />

¾<br />

r ∂ 2 u<br />

∂t 2 u<br />

=<br />

=<br />

divσ + γ ie<br />

0<br />

(ΩS )<br />

(Γ0 )<br />

(1)<br />

(2)<br />

σ.n = −pn (Γ) (3)<br />

∆p − 1<br />

2<br />

c0 ∂ 2 p<br />

∂t 2 = div(−r 0γ ie) (Ω F ) (4)<br />

∂p<br />

∂<br />

= −r0 ∂n<br />

2 u<br />

∂t 2 .n − r0γ ie.n (Γ1) (5)<br />

∂p<br />

= −r0γ ie.n (Γ) (6)<br />

∂n<br />

¾<br />

p = 0 (Γg ∪ Γs ∪ Γe) (7)<br />

xω(t) + zω<br />

γ ie =<br />

2 (t)<br />

0<br />

zω(t) − xω 2 ⎡<br />

⎤<br />

⎢<br />

⎥<br />

⎢<br />

⎥<br />

⎣<br />

⎢ (t) ⎦<br />

⎥<br />

Where c is the wave velocity <strong>in</strong> the fluid, r is the density of the mono-<br />

0 ¾<br />

f<strong>in</strong>, r is the fluid density <strong>and</strong> n is the unit outward normal to the f<strong>in</strong><br />

0<br />

doma<strong>in</strong>. The coupl<strong>in</strong>g results <strong>in</strong> a new term <strong>in</strong> the <strong>in</strong>ertial contribution of<br />

the system. Indeed, this added mass characterizes the energy transmission<br />

¾<br />

between the f<strong>in</strong> <strong>and</strong> the water. The specificity of the present method is that<br />

¾<br />

the temporal evolution ¾ of dynamical features is available. Namely, transient<br />

added mass, three-dimensional forces <strong>and</strong> torques at the po<strong>in</strong>t correspond<strong>in</strong>g<br />

to the swimmer’s ankle as well as energy balance are obta<strong>in</strong>ed.<br />

S<strong>in</strong>ce this result<strong>in</strong>g fluid-structure <strong>in</strong>teraction problem is too complex to<br />

be solved analytically, we analyzed us<strong>in</strong>g the means of numerical approximation.<br />

We will briefly outl<strong>in</strong>e the solution methodology used to solve<br />

the govern<strong>in</strong>g equations. The latter are solved with the F<strong>in</strong>ite Element<br />

Method us<strong>in</strong>g the commercial software COMSOL Multiphysics (Comsol<br />

Inc., Burl<strong>in</strong>gton, USA) . Numerical simulations are carried out for the<br />

fluid flow <strong>in</strong> a pool with the follow<strong>in</strong>g dimensions: In the pool, a f<strong>in</strong> with<br />

realistic dimensions (0.80 m chord <strong>and</strong> 0.50 wide) is located at the distance<br />

of 5 m from left wall. In this study a monolithic approach is used.<br />

Indeed, the equations govern<strong>in</strong>g the fluid flow <strong>and</strong> the displacement of the<br />

structure are solved simultaneously with s<strong>in</strong>gle solver. The ma<strong>in</strong> steps of<br />

the methodology are the follow<strong>in</strong>g: first, based on realistic pictures, the<br />

geometry of the monof<strong>in</strong> is created. The result<strong>in</strong>g volume, which is the<br />

form of an Initial Graphics Exchange Specification (IGES) file format,<br />

is then <strong>in</strong>put <strong>in</strong>to the commercial software COMSOL Multiphysics <strong>and</strong><br />

transformed to an unstructured volume mesh with triangular elements.<br />

The second step consists <strong>in</strong> the mesh<strong>in</strong>g. The f<strong>in</strong>al volume mesh (Figure<br />

1) consists of 6256 triangular elements for the f<strong>in</strong> <strong>and</strong> 128676 triangular<br />

elements for the water. The third step consists <strong>in</strong> a modal analysis of the<br />

three-dimensional coupled problem. γ ie is set to zero <strong>and</strong> a time harmonic<br />

solution of the problem is computed. This allows obta<strong>in</strong><strong>in</strong>g the fundamental<br />

vibration characteristics of the immersed monof<strong>in</strong> <strong>and</strong> therefore<br />

the quantitative <strong>and</strong> qualitative effect of the added mass can be po<strong>in</strong>ted<br />

out. The f<strong>in</strong>al step of the ¾ methodology consists <strong>in</strong> a transient analysis of<br />

propulsive forces. Thus, <strong>in</strong> the numerical experiments that are presented,<br />

the monof<strong>in</strong> is undergo<strong>in</strong>g time-dependent motion that comb<strong>in</strong>es translat<strong>in</strong>g<br />

<strong>and</strong> rotat<strong>in</strong>g motions as follows<br />

chaPter2.<strong>Biomechanics</strong><br />

ω(t) = θ0 s<strong>in</strong>(ω 0t +ψ) h(t) = h0 s<strong>in</strong>(ω 0t)<br />

with<br />

ω0 =1.7rad.s −1<br />

θ0 = π<br />

rad<br />

4<br />

π<br />

ψ =<br />

2 rad h0 = 3<br />

4 c<br />

<strong>in</strong> which c is the chord of the monof<strong>in</strong>. In the numerical experiments, c<br />

is set to 0.7m. The material properties used <strong>in</strong> the FEM simulation are<br />

given <strong>in</strong> Table 1.<br />

Table 1. Material characteristics used <strong>in</strong> the FEM simulation. E is the<br />

Young’s modulus, ν is the Poisson’s coefficient <strong>and</strong> r is the density of<br />

the monof<strong>in</strong>. (Data provided by Breier SAS company)<br />

¾<br />

E [Pa] ν<br />

r [kg.m<br />

¾<br />

¾<br />

¾ ¾<br />

¾ ¾<br />

¾<br />

−3 ]<br />

Carbon 12K<br />

146.10<br />

¾<br />

9<br />

0.32 1565<br />

Low density Polyethylene 146.10<br />

¾ ¾<br />

¾<br />

9<br />

0.38 920<br />

Rubber<br />

0,05.10<br />

¾ ¾<br />

¾<br />

9 0.49 1250<br />

Some of the key parameters associated with the performance of the<br />

monof<strong>in</strong> are the lift force L, the thrust ¾ force ¾ T (equal to negative drag<br />

force D) <strong>and</strong> the result<strong>in</strong>g torque at the swimmer’s. Thanks to the present<br />

FEM method, the accurate efforts (result<strong>in</strong>g force <strong>and</strong> result<strong>in</strong>g<br />

torque) at the po<strong>in</strong>t O, which corresponds to the swimmer ankle, are<br />

computed. The <strong>in</strong>stantaneous resultant force components are calculated<br />

by directly <strong>in</strong>tegrat<strong>in</strong>g the traction vector on the f<strong>in</strong> surface. In particular,<br />

if σ is the stress tensor <strong>and</strong> n is the outward normal unit to the f<strong>in</strong><br />

surface A, the resultant force is given by<br />

R(t) = ∫ σ.ndΓ<br />

= L(t).x + L(t).z<br />

A<br />

where T(t) <strong>and</strong> L(t) are the <strong>in</strong>stantaneous thrust force <strong>and</strong> <strong>in</strong>stantaneous<br />

lift force respectively. It known that the performance of flexible<br />

f<strong>in</strong>s depends largely on the effective dynamic properties of the structure.<br />

Therefore, ¾ modal analysis was performed <strong>in</strong> this work. This allowed for<br />

¾<br />

the quantification of the added mass effect on the f<strong>in</strong> by compar<strong>in</strong>g the<br />

natural frequencies <strong>and</strong> modal shapes <strong>in</strong> the case where the f<strong>in</strong> is submerged<br />

or not. The first natural frequencies fi = λi /2π are reported <strong>in</strong><br />

Table 2. In this study transient force <strong>and</strong> torque at the swimmer’s ankle<br />

is computed. Figure 3 shows the variation of the thrust.<br />

Table 2. Comparison of first natural frequencies fi = λi /2π [Hz] obta<strong>in</strong>ed<br />

with the Coupled FEM. ¾<br />

f1 f2 f3<br />

2D <strong>in</strong> water 6.08 41.12 70.03<br />

3D <strong>in</strong> vacuum 13.01 ¾ 113.51 256.34<br />

3D <strong>in</strong> water 4.395 23.87 41.87<br />

53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!