27.06.2013 Views

Structure, fonctionnement, évolution des communautés benthiques ...

Structure, fonctionnement, évolution des communautés benthiques ...

Structure, fonctionnement, évolution des communautés benthiques ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00009359, version 1 - 1 Jun 2005<br />

Chapitre 3 - Fonctionnement du réseau trophique benthique de la Grande Vasière<br />

on the bottom. Consequently, the only organic material for benthic primary consumers is assumed to<br />

be the POM sedimenting from upper water layers and therefore this is <strong>des</strong>ignated as the first trophic<br />

level (TL1).<br />

Results<br />

Species for isotopic analysis were selected as those which were both dominant in abundance<br />

and biomass and also accessible for predation by the two main target species. Nephrops norvegicus,<br />

Munida rugosa, Liocarcinus depurator and Microchirus variegatus were found in all samples and<br />

composed 52% of the total biomass (Table 1). Demersal and benthic fishes constituted 36% of the<br />

total biomass (52.96 g dry weight•1000 m -2 ). Epibenthos mean biomass (mostly Crustacea: 84%) was<br />

93.36 g dry weight•1000 m -2 , and mean total abundance was 115 individuals•1000 m -2 .<br />

Table 1: Taxonomic list of the major fauna collected at eight stations of the “Grande Vasière”. The mean<br />

weight is a dry weight, the% weight is the biomass part of the species in the total fauna collected biomass.<br />

(SD): standard deviation.<br />

Dominant fauna<br />

%<br />

Occurrence<br />

Mean weight<br />

g•1000 m -2 (SD)<br />

228<br />

%<br />

Weight<br />

Mean number<br />

ind•1000 m -2 (SD)<br />

Nephrops norvegicus 100 29.07 (13.67) 19.87 20.31 (12.22)<br />

Munida rugosa 100 21.57 (20.21) 14.74 32.17 (31.21)<br />

Liocarcinus depurator 100 16.50 (13.37) 11.28 12.14 (10.46)<br />

Microchirus variegatus 100 9.40 (4.87) 6.43 2.26 (1.28)<br />

Arnoglossus laterna 87.5 10.85 (8.19) 7.41 5.16 (5.85)<br />

Enchylopsus cimbrius 87.5 10.23 (7.05) 6.99 1.51 (0.99)<br />

Goneplax rhomboi<strong>des</strong> 87.5 8.83 (9.33) 6.03 5.08 (4.98)<br />

Alpheus glaber 87.5 0.63 (0.53) 0.43 4.98 (4.25)<br />

Nucula sulcata 75 2.26 (2.54) 1.55 3.82 (4.71)<br />

Lesueuriogobius friseii 75 1.92 (3.08) 1.31 3.72 (5.91)<br />

Crangon allmani 75 0.61 (0.52) 0.42 4.89 (2.84)<br />

Macropodia tenuirostris 75 0.59 (1.19) 0.41 5.64 (12.01)<br />

Merluccius merluccius 62.5 8.13 (11.63) 5.56 1.03 (1.03)<br />

Venus ovata 62.5 0.64 (0.98) 0.44 0.55 (0.66)<br />

Squilla <strong>des</strong>maresti 50 0.39 (0.48) 0.26 0.74 (0.94)<br />

Chlorotoccus crassicornis 50 0.31 (0.43) 0.21 1.19 (1.49)<br />

Callyonimus lyra 37.5 1.34 (2.01) 0.92 0.22 (0.32)<br />

Brissopsis lyrifera 37.5 0.96 (1.48) 0.66 0.29 (0.43)<br />

Capros aper 37.5 0.36 (0.58) 0.24 0.58 (0.98)<br />

Callyonimus maculatus 37.5 0.34 (0.56) 0.23 0.36 (0.66)<br />

Sternapsis scutata 37.5 0.06 (0.09) 0.04 0.22 (0.32)<br />

Identification of the trophic groups<br />

Average stable nitrogen isotope ratios ranged from 4.1‰ (POM surface) to 14.5‰<br />

(M. merluccius), corresponding to four main trophic levels. A Student test (α = 0.05) indicated no<br />

significant difference between surface and bottom POM.<br />

Analysis showed a wide range of δ 13 C isotope signatures, from -23.7‰ (POM surface) to -<br />

15.4‰ for the crab Goneplax rhomboi<strong>des</strong>. δ 13 C, like δ 15 N, showed no significant difference (Student

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!