04.06.2013 Views

Elemente de algebra liniara.pdf

Elemente de algebra liniara.pdf

Elemente de algebra liniara.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

98 <strong>Elemente</strong> <strong>de</strong> algebră liniară<br />

Din relat¸iile (4.6) ¸si (4.7) rezultă<br />

ceea ce conduce la<br />

aij = 〈Aej, ei〉, a ∗ ij = 〈A ∗ ej, ei〉<br />

a ∗ ij = 〈A ∗ ej, ei〉 = 〈ej, Aei〉 = 〈Aei, ej〉 = āji.<br />

4.5 Operatori autoadjunct¸i<br />

Definit¸ia 4.23 Prin operator autoadjunct (sau hermitian)se înt¸elege un oper-<br />

ator liniar A : V −→ V astfel incât A ∗ = A, adică un operator astfel încât<br />

〈Ax, y〉 = 〈x, Ay〉, ∀x, y ∈ V. (4.8)<br />

Notat¸ie. Vom nota cu A(V ) mult¸imea operatorilor autoadjunct¸i <strong>de</strong>finit¸i pe V , adică<br />

Propozit¸ia 4.24<br />

A(V ) = { A ∈ L(V ) | A ∗ = A }<br />

= { A ∈ L(V ) | 〈Ax, y〉 = 〈x, Ay〉, ∀x, y ∈ V }.<br />

a) A, B ∈ A(V ) =⇒ A + B ∈ A(V )<br />

b)<br />

A ∈ A(V )<br />

α ∈ R<br />

<br />

=⇒ αA ∈ A(V )<br />

c) Daca A, B ∈ A(V ) atunci :<br />

AB ∈ A(V ) ⇐⇒ AB = BA<br />

d) Daca operatorul A ∈ A(V ) este inversabil atunci A −1 ∈ A(V ).<br />

Demonstrat¸ie. Vom utiliza propozitia 4.21.<br />

a) Avem (A + B) ∗ = A ∗ + B ∗ = A + B<br />

b) Avem (αA) ∗ = ¯αA ∗ = αA.<br />

c) Dacă AB ∈ A(V ) atunci AB = (AB) ∗ = B ∗ A ∗ = BA.<br />

Dacă AB = BA atunci (AB) ∗ = B ∗ A ∗ = BA = AB ¸si <strong>de</strong>ci AB ∈ A(V ).<br />

d) Avem 〈A −1 x, y〉 = 〈A −1 x, A(A −1 y)〉 = 〈A(A −1 x), A −1 y〉 = 〈x, A −1 y〉.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!