05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Problems 97<br />

Table 3.23 Problem 65<br />

Material p (psia) T (°F) v (ft 3 /lbm) x (if applicable)<br />

Water ? 300. 4.00 ?<br />

Water 300. ? ? 0.500<br />

Water 1.00 1000. ? ?<br />

Mercury 1.00 ? ? 1.00<br />

Ideal gas* 100. ? 5.00 ?<br />

* Use the ideal gas equation of state with R = 50 ft · lbf/(lbm · R.).<br />

Table 3.24 Problem 66<br />

Material p (psia) T (°F) v (ft 3 /lbm) h (Btu/lbm) x (if applicable)<br />

Water 40.0 ? ? ? 0.00<br />

Water ? ? 51.03 1240.5 ?<br />

Water ? 50.0 ? ? 1.00<br />

Ref.-134a 243.86 ? ? ? 0.500<br />

Ref.-134a ? 160. ? ? 1.00<br />

Mercury 100. ? ? ? 1.00<br />

Table 3.25 Problem 67<br />

Material T (°F) p (psia) h (Btu/lbm) x (if applicable)<br />

Ammonia 60.0 60.0 ? ?<br />

Ammonia 60.0 ? ? 0.100<br />

Mercury ? 60.0 38.44 ?<br />

Ref.-134a 60.0 ? ? 1.00<br />

Water ? 1.00 1336.1 ?<br />

Water ? 1.00 ? 0.00<br />

Table 3.26 Problem 68<br />

Material p (psia) T (°F) v (ft 3 /lbm) x (if applicable)<br />

H 2 O 466.3 460. ? 0.00<br />

H 2 O 160. 363.6 ? 1.00<br />

H 2 O 40.0 ? 6.00 ?<br />

H 2 O 1000. 1000. ? ?<br />

Ammonia ? 105 1.00 ?<br />

Ammonia 100. 100. ? ?<br />

Ref.-134a ? 200. ? 0.500<br />

Ref.-134a 325 ? ? 0.00<br />

Mercury 1000. ? ? 1.00<br />

Computer Problems<br />

These problems are designed to be done on a personal computer<br />

using a spreadsheet or equation solver. The problems cannot be<br />

done easily without the use of a computer. They are meant to furnish<br />

an additional learning experience by providing new insights<br />

into the operation of complex thermodynamic systems and<br />

demonstrating the power of the personal computer in generating<br />

and manipulating thermodynamic properties. In these problems,<br />

log is the base 10 logarithm and ln is the base e (i.e., natural)<br />

logarithm.<br />

69. In 1849, William Rankine proposed the following pressuretemperature<br />

relation for saturated water:<br />

logp sat = 6:1007 − 2731:62/T sat − 396,945/Tsat<br />

2<br />

where p sat is in psia and T sat is in R. Develop a computer program<br />

that returns values for p sat in psia when T sat is input in °F. Be sure<br />

to include proper units on all input and output values. Using the<br />

steam tables in Table C.1a of Thermodynamic Tables to accompany<br />

<strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong>, plot the percent error in your<br />

calculated saturation pressure vs. input temperature utilizing data<br />

at 32.0, 100., 200., 300., 400., 500., 600., and 700.°F.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!