05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

678 CHAPTER 16: Compressible Fluid Flow<br />

EXAMPLE 16.11 (Continued )<br />

Then, the temperature directly behind the shock wave is given by Eq. (16.35) as<br />

2<br />

1 + k−1 3<br />

2<br />

T y = T<br />

2 ðM xÞ 2<br />

1 + 1:40 − 1 3<br />

ð5:50Þ 2<br />

6<br />

7<br />

6<br />

x 4<br />

1 + k−1 5 = ð70:0 + 459:67 RÞ<br />

2<br />

7<br />

4<br />

2 ðM yÞ 2<br />

1 + 1:40 − 1 5 = 3610 R<br />

ð0:409Þ 2<br />

2<br />

and the pressure directly behind the shock wave is given by Eq. (16.34) as<br />

<br />

M<br />

p y = p x<br />

x<br />

M y<br />

T y<br />

T x<br />

1/2 <br />

= ð14:7 lbf/in 2 Þ<br />

5:50<br />

0:409<br />

1/2<br />

3610 R<br />

= 516 lbf/in 2<br />

70:0 + 459:67 R<br />

Finally, the wind velocity directly behind the shock wave is just the relative velocity V x – V y ,or<br />

pffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

pffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

V wind = V x − V y = M x c x − M y c y = M x kg c RT x − M y kg c RT y<br />

p<br />

= 5:50 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

1:40ð32:174 lbm.ft/lbf × s 2 Þð53:34 ft.lbf/lbm.RÞð70:0 + 459:67 RÞ<br />

p<br />

− 0:409<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

1:40ð32:174 lbm.ft/lbf .s 2 Þð53:34 ft.lbf/lbm.RÞð3610 RÞ<br />

= 5:00 × 10 3 ft/s<br />

These extremely high values for p y , T y , and the wind velocity show why large explosions produce so much damage to life and<br />

property.<br />

Exercises<br />

28. Determine the Mach number directly behind the shock wave in Example 16.11 if the Mach number of the shock wave<br />

itself is 4.0 and all the other variables remain unchanged. Answer: M y = 0.434.<br />

29. Use Eq. (16.36) to verify the pressure directly behind the shock wave calculated in Example 16.11. Answer: p y = 516<br />

psia (the same as determined in Example 16.11).<br />

30. If the temperature in front of the shock wave in Example 16.11 is 0.00°F rather than 70.0°F and all the other variables<br />

remain unchanged, determine the wind velocity directly behind the shock wave. Answer: V wind = 4570 ft/s.<br />

31. Determine the constant value assumed by M y as M x → 4. Thus, no matter how high M x is, M y can never be less than this<br />

value. Answer: M y (as M x → 4) = [(k – 1)/2k] 1/2 = 0.378 for air.<br />

Equations (16.35), (16.36), and (16.37) have been tabulated for air ðk = 1:4Þ in Table C.19 in Thermodynamic<br />

Tables to accompany <strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong>. The reader is encouraged to use this table when its direct<br />

entry is convenient. However, rather than interpolating for nondirect entry values, the equations just given can<br />

be used to make accurate direct calculations, since they were used to generate the table.<br />

Finally, an entropy rate balance on the shock wave gives<br />

Entropy rate balance (SRB, SS, SF, SI/SO, A)<br />

_s p = _mðs y − s x Þ ≥ 0<br />

So,<br />

<br />

_S p / _m = s y − s x = c p ln T y /T x − R ln py /p x<br />

h i k/ðk−1Þ<br />

= R ln p x /p y Ty /T x ≥ 0<br />

(16.38)<br />

Therefore,<br />

p x /p y ≥ T x /T y<br />

k/ðk−1Þ<br />

and by substituting Eqs. (16.35) and (16.36) into this relation, it can be shown that M x ≥ M y : Consequently,<br />

the second law of thermodynamics stipulates that shock waves can occur only in supersonic flows, from<br />

M x ≥ 1toM y ≤ 1 and can never occur in subsonic flows. Equation (16.38) is shown in Figure 16.23 for air<br />

(k = 1.40).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!