05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

412 CHAPTER 12: Mixtures of Gases and Vapors<br />

EXAMPLE 12.2 (Continued )<br />

2. Oops, Research discovered still another error; it turns out that the composition given in Example 12.1 was correct except<br />

that it is 50.0% propane and 50.0% air on a molar basis. Now , Research wants you to determine the corresponding<br />

mass based composition. Answer: w propane = 0.603 and w air = 0.397.<br />

3. A more detailed composition for air than that given in Example 12.2 is<br />

Component Molar % (Answer: Mass %)<br />

Nitrogen (N 2 ) 78.084 75.519<br />

Oxygen (O 2 ) 20.948 23.143<br />

Argon (Ar) 0.934 1.288<br />

Carbon dioxide (CO 2 ) 0.0314 0.0477<br />

Neon (Ne) 0.00182 0.00127<br />

Helium (He) 0.000520 0.0000720<br />

Methane (CH 4 ) 0.000200 0.000110<br />

Krypton (Kr) 0.000110 0.000320<br />

Hydrogen (H 2 ) 0.0000500 0.00000350<br />

Dinitrogen monoxide (N 2 O) 0.0000500 0.0000620<br />

Xenon (Xe) 0.00000800 0.0000360<br />

Total = 100.000% 100.000%<br />

Determine the equivalent molecular mass and the corresponding composition on a mass (or weight) basis. Answer:<br />

M m = 28.97 kg/kgmole = 28.97 lbm/lbmole, and see the table.<br />

12.3 MIXTURES OF IDEAL GASES<br />

A mixture of ideal gases behaves as a unique ideal gas with an equivalent molecular mass M m and gas<br />

constant R m given by Eqs. (12.11) or (12.12) and (12.15). Ideal gas mixtures obey all of the ideal gas<br />

equations of state:<br />

p m V m = m m R m T m<br />

u m2 − u m1 =<br />

Z Tm2<br />

T m1<br />

c vm dT m<br />

and<br />

h m2 − h m1 =<br />

Z Tm2<br />

T m1<br />

c pm dT m<br />

s m2 − s m1 =<br />

=<br />

Z Tm2<br />

T m1<br />

Z Tm2<br />

T m1<br />

ðc vm /T m Þ dT m + R m lnðv m2 /v m1 Þ<br />

<br />

c pm /T m dTm − R m lnðp m2 /p m1 Þ<br />

where p m and T m are the mixture pressure and temperature, respectively. If the mixture can be considered to<br />

have constant specific heats, then these equations reduce to<br />

u m2 − u m1 = c vm ðT m2 − T m1 Þ<br />

h m2 − h m1 = c pm ðT m2 − T m1 Þ<br />

s m2 − s m1 = c vm lnðT m2 /T m1<br />

= c pm lnðT m2 /T m1<br />

i=1<br />

Þ+ R m lnðv m2 /v m1 Þ<br />

Þ− R m lnðp m2 /p m1 Þ<br />

From p m V m = m m R m T m and Eqs. (12.3), (12.12), and (12.15), we find that, for a mixture of ideal gases,<br />

V m = m <br />

mR m T m<br />

= m<br />

R T m<br />

m<br />

p m M m p m<br />

= m m R ∑ N ! <br />

w i T m<br />

= RT N<br />

m<br />

M i p m p ∑<br />

m i<br />

m M i<br />

i=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!