05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

760 CHAPTER 18: Introduction to Statistical <strong>Thermodynamics</strong><br />

11. The statistical thermodynamic equations for a monatomic Maxwell-Boltzmann gas are<br />

u = 3 9<br />

2 RT<br />

h = u + RT = 5 2 RT<br />

c v = 3 2 R<br />

>=<br />

For monatomic gases only<br />

c p = 5 2 R<br />

n h<br />

i<br />

s = R ln ð2πm/ħ 2 Þ 3/2 ðkTÞ 5/2 /p + 5 o<br />

>;<br />

2<br />

12. The statistical thermodynamic equations for a diatomic Maxwell-Boltzmann gas are<br />

u = RΘ v<br />

2 + 5 2 RT + RΘ v<br />

½expðΘ v /TÞ−1Š<br />

h = RΘ v<br />

2 + 7 2 RT + RΘ v<br />

½expðΘ v /TÞ−1Š<br />

n h<br />

i<br />

s = R ln ð2πm/ħ 2 Þ 3/2 ðkTÞ 5/2 /p + 5 o<br />

+ Rfln ½T/σ Θ r ÞŠ+ 1g<br />

2<br />

<br />

+ R ln ½1 − expð−Θ v /TÞŠ −1 + ðΘ v /TÞ/ ½expðΘ v /TÞ−1Š<br />

c v = 5 2 R + R ð Θ v/TÞ 2 ½expðΘ v /TÞŠ<br />

½expðΘ v /TÞ−1Š 2<br />

c p = 7 2 R + R ð Θ v/TÞ 2 ½expðΘ v /TÞŠ<br />

½expðΘ v /TÞ−1Š 2<br />

13. The statistical thermodynamic equations for a linear polyatomic Maxwell-Boltzmann gas molecule are<br />

u = 5 RΘ<br />

RT + vi<br />

∑3b−5<br />

2<br />

i=1<br />

2 + Θ vi<br />

R∑3b−5<br />

i=1<br />

½expðΘ vi /TÞ−1Š<br />

RΘ vi<br />

h = 7 RT + ∑3b−5<br />

2<br />

i=1<br />

2 + R∑3b−5<br />

i=1<br />

½expðΘ vi /TÞ−1Š<br />

n<br />

s = R ln ð2πm/ħ 2 Þ 3/2 ðkTÞ 5/2 /p + 5 o<br />

+ Rfln ½T/ðσ Θ r ÞŠ+ 1g<br />

2<br />

+ R∑ 3b−5<br />

s vib = R∑ 3b−5<br />

i=1<br />

i=1<br />

Θ vi<br />

<br />

ln½1 − expð−Θ vi /TÞŠ −1 + ðΘ vi /TÞ/ ½expðΘ vi /TÞ−1Š<br />

<br />

ln½1 − expð−Θ vi /TÞŠ −1 + ðΘ vi /TÞ/ ½expðΘ vi /TÞ−1Š<br />

14. The statistical thermodynamic equations for a nonlinear polyatomic Maxwell-Boltzmann gas molecule are<br />

the same as those for a linear molecule except the upper limit of 3b−5 in the summations is replaced by<br />

3b−6.<br />

Problems (* indicates problems in SI units)<br />

1. Determine the number of diatomic nitrogen (N 2 ) molecules in<br />

1in 3 at 70.0°F and a pressure of 1.00 × 10 −10 mm of mercury<br />

absolute (a very high vacuum).<br />

2.* Determine the mean free path and the collision frequency of<br />

diatomic nitrogen at 1000. K and 10.0 MPa. The effective radius<br />

of the nitrogen molecule is 1.10 × 10 −10 m.<br />

3.* For 10 10 bromine (Br 2 ) molecules confined in a volume of<br />

1.00 m 3 at a pressure of 1.00 Pascal, assume ideal gas kinetic<br />

theory behavior and determine<br />

a. The temperature in the container.<br />

b. The mean free path between collisions.<br />

c. The collision frequency F:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!