05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

11.10 Compressibility Factor and Generalized Charts 393<br />

Solving for T 2 gives<br />

T 2 = 423:15 K − 14:0 kJ/kgmole <br />

<br />

.K 304:2K<br />

= 308:6K = 35:5°C<br />

0:845 kJ/kg .K 44:01 kg/kgmole<br />

Exercises<br />

42. Determine the exit temperature in the throttle described in Example 11.15 if the inlet pressure is reduced from 20.0 MPa<br />

to 10.0 MPa. Answer: T 2 = 117°C.<br />

43. If the temperature of the CO 2 entering the throttle in Example 11.15 is reduced from 150.°C to 100.°C, determine the<br />

exit temperature of the CO 2 . Answer: T 2 = −90.0°C.<br />

44. Suppose the CO 2 in Example 11.15 is replaced with air using the same inlet and exit conditions. Determine the exit<br />

temperature of the air from the throttle. Answer: T 2-air = 141°C.<br />

Similarly, integration of Eq. (11.26) between a zero value reference state (p o = T o = s o = 0) and a final state at<br />

p, v, T, and s gives<br />

Z T<br />

s = c p /T Z p<br />

dT − ð∂v/∂TÞ p dp<br />

0<br />

0<br />

and, for an ideal gas, we have, from Eq. (7.35),<br />

Combining these results, we get<br />

Now, using Eq. (11.40),<br />

s* =<br />

Z T<br />

0<br />

s = s* +<br />

ðc p /TÞdT − R<br />

Z p<br />

0<br />

Z p<br />

0<br />

h<br />

R/p −ð∂v/∂T<br />

dp/p<br />

Þ p<br />

i<br />

dp<br />

Then,<br />

R/p −ð∂v/∂T<br />

s* − s = R<br />

Þ p<br />

= R/p − ZR/p − ðRT/pÞð∂Z/∂T<br />

h<br />

i<br />

= ðR/pÞ 1 − Z − Tð∂Z/∂T<br />

Z p<br />

0<br />

Þ p<br />

h<br />

i<br />

Tð∂Z/∂TÞ p<br />

+ Z − 1 ðdp/pÞ<br />

Again, nondimensionalizing with T = T c T R and p = p c p R and multiplying both sides by the molecular mass M to<br />

remove substance dependence from the equation, we get the molar results:<br />

s* − s = R<br />

Z pR<br />

0<br />

Þ p<br />

h<br />

i<br />

T R ð∂Z/∂T R Þ pR<br />

+ Z − 1 ðdp R /p R Þ<br />

Compressibility data have been used to integrate this equation, and the results are shown in Figure 11.11. To<br />

find the change in specific entropy between states 1 and 2 using this figure, calculate the values of p R and T R<br />

and obtain values for s* − s from the figure. Then, we can compute<br />

s 2 − s 1 = ðs 2 − s 1 Þ −<br />

<br />

ð s − sÞ 2<br />

− s <br />

ð − sÞ 1 ð1/MÞ (11.42)<br />

where s 2 − s 1 = ϕ 2 − ϕ 1 − R lnðp 2 /p 1 Þ from the gas tables, or by assuming constant specific heats over the<br />

temperature range from T 1 to T 2 and using s 2 − s 1 = c p ln(T 2 /T 1 ) – R ln(p 2 /p 1 ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!