05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

288 CHAPTER 9: Second Law Open System Applications<br />

EXAMPLE 9.4 (Continued )<br />

a. The MERB for this aergonic device with negligible change in kinetic<br />

and potential energy is<br />

System boundary<br />

_Q − 0 = _m ðh 2 − h 1 + 0Þ<br />

1 2<br />

and, from Table C.7a for R-134a, we find<br />

0.100 lbm/s of<br />

refrigerant-134a<br />

and<br />

h 1 = h f ð100°FÞ = 44:23 Btu/lbm<br />

s 1 = s f ð100°FÞ = 0:0898 Btu/ ðlbm.RÞ<br />

h 2 = h f ð20:0°FÞ+ x 2 h fg ð20:0°FÞ<br />

= 17:74 + ð0:530Þð86:87Þ = 63:78 Btu/lbm<br />

s 2 = s f ð20:0°FÞ+ x 2 s fg ð20:0°FÞ<br />

= 0:0393 + ð0:530Þð0:2206 − 0:0393Þ = 0:1353 Btu/ ðlbm.RÞ<br />

Q<br />

FIGURE 9.4<br />

Example 9.4.<br />

Then, the MERB gives<br />

_Q = ð0:100 lbm/sÞð63:78 − 44:23 Btu/lbmÞ = 1:955 Btu/s<br />

and Eq. (9.13) gives<br />

_S P = _m ðs 2 − s 1 Þ − _ Q<br />

<br />

−<br />

T b<br />

1:955 Btu/s<br />

60:0 + 459:67 R<br />

= ð0:100 lbm/sÞ½0:1353 − 0:0898 Btu/ ðlbm.RÞŠ<br />

<br />

= 7:88 × 10 −4 Btu/ ðs.RÞ<br />

= ½7:88 × 10 −4 Btu/ ðs.RÞŠð778:17 ft.lbf/BtuÞ = 0:613 ft.lbf/ ðs.RÞ<br />

b. The MERB for this device as an adiabatic, aergonic, negligible change in kinetic and potential energy system is<br />

or<br />

0 − 0 = _m ðh 2 − h 1 + 0Þ<br />

h 2 = h 1<br />

Now, station 2 is fixed by the pair of properties T = 20.0°F andh 2 = h 1 = 44.23 Btu/lbm. Consequently, the quality at<br />

station 2 cannot be 53.0% but is instead<br />

then,<br />

Then, with _Q = 0, Eq. (9.13) gives<br />

x 2 = h 2 − h f 2 44:23 − 17:74<br />

= = 0:3049 = 30:5%<br />

h fg2 86:87<br />

s 2 = 0:0393 + 0:3049ð0:2206 − 0:0393Þ = 0:0946 Btu/ ðlbm.RÞ<br />

_S P = _mðs 2 − s 1 Þ − _ Q<br />

T b<br />

= ð0:100 lbm/sÞ½0:0946 − 0:0898 Btu/ ðlbm.RÞŠ− 0<br />

= 4:80 × 10 −4 Btu/ ðs.RÞ = ½4:80 × 10 −4 Btu/ ðs.RÞŠð778:17 ft.lbf/BtuÞ<br />

= 0:374 ft.lbf/ ðs.RÞ<br />

c. The percentage decrease in _S P brought about by adding the insulation is<br />

7:88 × 10 −4 Btu/ ðs.RÞ− 4:80 × 10 −4 Btu/ ðs.RÞ<br />

7:88 × 10 −4 × 100 = 39:1%<br />

Btu/ ðs.RÞ<br />

Note that there is a substantial decrease in the entropy production rate of Example 9.4 due to simply insulating the valve.<br />

This results from the elimination of the entropy generated by the heat transfer present in the uninsulated valve.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!