05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8.3 Systems Undergoing Irreversible Processes 267<br />

Solution<br />

First, draw a sketch of the system (Figure 8.13).<br />

T f<br />

Fin of thermal conductivity k t<br />

Perimeter P<br />

x<br />

L<br />

T ∞<br />

Area A<br />

FIGURE 8.13<br />

Example 8.12.<br />

The unknown is the entropy production rate for the fin. The material is aluminum.<br />

Since there is no work mode entropy production here, Eq. (7.66) is used to find the fin’s entropy production rate by the direct<br />

method (note that we have insufficient information to use the more convenient indirect method or entropy balance here) as<br />

Z <br />

<br />

_S P = _S P Q = − _q<br />

<br />

dT<br />

T 2 dx<br />

0<br />

V<br />

dV<br />

act<br />

Since this is a one-dimensional heat transfer problem, we can substitute Adxfor dV: Then,<br />

Z<br />

<br />

L<br />

<br />

_S P Q = − _q<br />

<br />

Z ∞<br />

<br />

dT<br />

k<br />

Adx= t A dT 2<br />

<br />

T 2 dx<br />

T 2 dx<br />

dx<br />

where we have used Fourier’s law, _q = −k t ðdT/dxÞ, and have let L → ∞ for a very long fin. We can differentiate the fin’s temperature<br />

profile given previously to obtain<br />

dT<br />

dx = −m T <br />

f − T ∞ e<br />

−mx<br />

then<br />

<br />

pffiffiffiffiffiffiffiffiffiffiffiffi<br />

A dT 2 hPk t AðmÞ T f − T 2<br />

e<br />

−2mx<br />

k t<br />

=<br />

T 2<br />

<br />

dx T ∞ + ðT f − T ∞ Þe −mx 2<br />

and<br />

2<br />

pffiffiffiffiffiffiffiffiffiffiffiffi<br />

ð Þ Q = mT f − T ∞ hPk t A<br />

S P<br />

Z ∞<br />

0<br />

0<br />

e −2mx dx<br />

<br />

T ∞ + T f − T ∞ e<br />

−mx 2<br />

This expression can be integrated using a table of integrals and a change of variables (e.g., let y =e –mx ) to obtain<br />

<br />

_S P Q =<br />

p ffiffiffiffiffiffiffiffiffiffiffiffi <br />

hPk t A ln T f<br />

+ T <br />

∞<br />

− 1<br />

T ∞ T f<br />

In this problem, we have<br />

h = 3:50 W/ m 2 ⋅K A = 1:00 × 10 −4 m 2<br />

P = 0:0400 m<br />

T ∞ = 20:0°C = 293:15 K<br />

k t = 204 W/ ðm⋅KÞ T f = 95:0°C = 368 K<br />

Then,<br />

<br />

_S P = _S P Q<br />

p<br />

= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi <br />

½3:50 W/ ðm 2 ⋅KÞŠð0:0400 mÞ½204 W/ ðm⋅KÞŠð1:00 × 10 −4 m 2 Þ ln 368<br />

293:15 + 293:15 <br />

368 − 1<br />

= 0:00128 W/K<br />

Note that the entropy production rate in this example is quite small.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!