05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 9<br />

Second Law Open System Applications<br />

CONTENTS<br />

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279<br />

9.2 Mass Flow Transport of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279<br />

9.3 Mass Flow Production of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280<br />

9.4 Open System Entropy Balance Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280<br />

9.5 Nozzles, Diffusers, and Throttles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284<br />

9.6 Heat Exchangers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289<br />

9.7 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293<br />

9.8 Shaft Work Machines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296<br />

9.9 Unsteady State Processes in Open Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297<br />

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308<br />

Final Comments on the Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310<br />

9.1 INTRODUCTION<br />

This chapter is an extension of Chapter 6, except here we use both the first and second laws of thermodynamics<br />

to analyze open systems. As in Chapter 8, we have two types of system processes to consider, reversible and<br />

irreversible. A reversible process is easier to analyze, because its entropy production is always equal to zero.<br />

However, reversible process models are often unrealistic in actual engineering applications because they require<br />

that the system have no losses (i.e., no friction or no heat transfer through a finite temperature difference etc.).<br />

On the other hand, irreversible process models are very realistic, because they take into account all the losses<br />

within the system, but they are often very difficult to analyze because of the complex entropy production terms<br />

that must be evaluated. We are therefore faced with the choice of carrying out a quick but possibly inaccurate<br />

analysis based on hypothetical reversible processes or a more complex but accurate analysis based on real<br />

irreversible processes. The material presented in this chapter focuses primarily on the latter by utilizing the<br />

appropriate entropy production formulae developed in Chapter 7.<br />

Since we have not yet considered the impact of flow streams on the general entropy balance, we must now<br />

introduce the mass flow transport and production of entropy characteristic of open systems.<br />

9.2 MASS FLOW TRANSPORT OF ENTROPY<br />

Mass flow transport of entropy occurs every time mass crosses the system boundary. Every element of mass dm<br />

is assumed to be in local equilibrium and hence has a well-defined specific entropy s. Therefore, dm transports<br />

an amount of entropy sdm when it crosses a system boundary, and we can set<br />

ðdS T Þ m<br />

= sdm<br />

<strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong>. DOI: 10.1016/B978-0-12-374996-3.00009-9<br />

© 2011 Elsevier Inc. All rights reserved. 279

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!