05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

13.10 <strong>Modern</strong> Steam Power Plants 485<br />

a. The isentropic thermal efficiency of this Rankine cycle power plant is given by Eq. (13.15) with (η s ) pm1 = (η s ) pm2 =<br />

(η s ) p = 1.0 as<br />

where the numerator in this equation is<br />

and the denominator is<br />

then, the isentropic thermal efficiency is<br />

ðη T Þ s<br />

= ðh 1 − h 2s Þ + ðh 3 − h 4s Þ + ðh 5 − h 6s Þ − v 7 ðp 8s − p 7 Þ<br />

ðh 1 − h 8s Þ + ðh 3 − h 2s Þ + ðh 5 − h 4s Þ<br />

Numerator = ð1530:8 − 1316:9Þ + ð1505:9 − 1343:8Þ + ð1526:4 − 955:1Þ<br />

<br />

144<br />

− 0:01606ð5000: − 0:400Þ = 932:4 Btu/lbm<br />

778:16<br />

Denominator = ð1530:8 − 55:76Þ+ ð1505:9 − 1316:9Þ+ ð1526:4 − 1343:8Þ<br />

= 1847 Btu/lbm<br />

ðη T Þ s =<br />

932:4 Btu/lbm<br />

1847 Btu/lbm<br />

b. The isentropic efficiency of the complete power generating unit is<br />

= 0:505 = 50:5%<br />

ðη s Þ = ð _W out Þ net actual<br />

turbine-generator<br />

ð _W out Þ net isentropic<br />

where the actual net power output is given as<br />

ð _W out Þ net actual = 325 MW = ð325,000 kWÞð3412 Btu/kW . hÞ = 1:11 × 10 9 Btu/h<br />

and the isentropic net power output can be calculated from<br />

Then,<br />

ð _W out Þ net isentropic = _W turbine 1 + _W turbine 2 + _W turbine 3 − j _W j pump<br />

= _mfðh 1 − h 2s<br />

Þ+ ðh 3 − h 4s<br />

Þ+ ðh 5 − h 6s<br />

Þ− v 7 ðp 7 − p 8s Þg<br />

= ð1:50 × 10 6 lbm/hÞfð1530:8 − 1316:9Þ+ ð1505:9 − 1343:8Þ<br />

+ ð1526:4 − 955:1Þ− 0:01606ð5000: − 0:400Þð144/778:16Þg Btu/lbm<br />

= 1:40 × 10 9 Btu/h<br />

ðη s Þ = 1:11 × 109 Btu/h<br />

turbine-generator<br />

1:40 × 10 9 = 0:793 = 79:3%<br />

Btu/h<br />

The isentropic efficiencies calculated in parts a and b are somewhat low because we choose to omit the eight regenerator<br />

units in this analysis.<br />

Exercises<br />

22. Determine the isentropic thermal efficiency of the Eddystone Power Plant discussed in Example 13.8 if the boiler<br />

outlet state temperature is increased from 1200.°F to 1500.°F. Assume all the other variables remain unchanged.<br />

Answer: (η T ) s = 52.1%.<br />

23. If the second reheat pressure in Example 13.8 is increased from 300. psia to 600. psia, what would be the new<br />

isentropic thermal efficiency of the power plant? Assume all the other variables remain unchanged. Answer:<br />

(η T ) s = 50.2%.<br />

24. If the operating conditions of the power plant in Example 13.8 remain unchanged, but the generator power output<br />

drops from 325 MW to 315 MW, determine the new isentropic efficiency of the power generating unit. Answer:<br />

(η s ) turbine-generator = 76.8%.<br />

The introduction of nuclear power in the 1960s added a new facet to heat source technology. Nuclear safety<br />

restrictions require the use of a double-loop heat transfer system to keep the radioactive reactor cooling fluid<br />

from entering the turbine, and this effectively limits the maximum nuclear power plant secondary loop temperature<br />

and pressure to around 1000°F and 800 psia. This has the effect of limiting nuclear plant thermal efficiencies<br />

to the low 30%s, while the thermal efficiencies of fossil fueled plants reached the low 50%s.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!