05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

15.12 Chemical Equilibrium and Dissociation 631<br />

which is also subject to an overall irreversible reaction equation in which y% oftheA present dissociates into B<br />

and C as<br />

A !ð1 − yÞA + y½A dissociated Š<br />

Then, the overall irreversible reaction equation can be written as<br />

A !ð1 − yÞA + y ðv B /v A<br />

ÞB + ðv C /v A ÞC <br />

and the equilibrium constant for this reaction is given by Eq. (15.37) as<br />

K e = ðχ <br />

BÞ vB ðχ C Þ vC ð vB+v<br />

p C−v A Þ<br />

m<br />

ðχ A Þ vA<br />

p°<br />

where χ A , χ B , and χ C are determined from the products of the overall irreversible reaction equation as<br />

and<br />

χ A =<br />

χ B =<br />

1 − y<br />

1 − y + yðv B /v A + v C /v A Þ<br />

yðv B /v A Þ<br />

1 − y + yðv B /v A + v C /v A Þ<br />

yv ð C /v A Þ<br />

χ C =<br />

1 − y + yv ð B /v A + v C /v A Þ<br />

(15.38)<br />

Table C.17 lists values of the base-10 logarithm of K e for a variety of simple dissociation reactions of this form<br />

at various temperatures.<br />

EXAMPLE 15.15<br />

The overall irreversible carbon dioxide dissociation reaction equation wherein y% of the CO 2 dissociates into CO and O 2 is<br />

CO 2 !ð1 − yÞðCO 2 Þ + yðCO 2 Þ dissociated<br />

subject to the reversible equilibrium dissociation reaction<br />

CO 2 ⇆ CO + 1 2 O 2<br />

Then the overall irreversible dissociation reaction equation is<br />

For this reaction, determine<br />

CO 2 !ð1 − yÞðCO 2 Þ + yðCOÞ + ðy/2ÞðO 2 Þ<br />

a. The variation in the degree of dissociation (y) with temperature at a total pressure of 0.100 MPa.<br />

b. The influence of total pressure on the degree of dissociation (y) at 3000. K.<br />

Solution<br />

The total number of moles of product in the overall irreversible reaction equation is ð1 − yÞ + y + y/2 = ð2 + yÞ/2. Then the<br />

mole fractions of the products are<br />

χ CO2 = 2ð1 − yÞ/ð2 + yÞ<br />

χ CO = 2y/ð2 + yÞ<br />

χ O2<br />

= y/ð2 + yÞ<br />

The reversible equilibrium dissociation reaction equation gives the stoichiometric coefficients, v i ,asv CO2 = 1:0, v CO = 1:0,<br />

and v O2 . Then, Eq. (15.38) gives the equilibrium constant as<br />

= 1 2<br />

"<br />

K e = ðχ #<br />

COÞðχ O2<br />

Þ 1/2<br />

ðχ CO2 Þ<br />

<br />

p m<br />

p°<br />

3<br />

7<br />

5<br />

ð1+1/2−1Þ<br />

2<br />

1/2<br />

2y y<br />

<br />

2 + y 2 + y<br />

1/2<br />

p m<br />

= 6<br />

4 2ð1 − yÞ p°<br />

2 + y<br />

" # 1/2 1/2<br />

y y p m<br />

=<br />

1 − y 2 + y p°<br />

(Continued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!