05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7.5 The Absolute Temperature Scale 213<br />

If we now follow Carnot’s lead and presume that the thermal efficiency of a reversible heat engine (η T ) rev<br />

depends only on the absolute temperatures of the thermal reservoirs, then we can write<br />

<br />

ðη T Þ rev<br />

= 1 − jQ <br />

outj<br />

= 1 − jQ <br />

Lj<br />

Q in<br />

Q H<br />

or<br />

rev<br />

<br />

1 − ðη T Þ rev<br />

= jQ <br />

Lj T<br />

= f L<br />

Q H rev<br />

T H<br />

rev<br />

(7.10)<br />

where f( ) is an unknown function that eventually is used to define the absolute temperature scale, and the subscripts<br />

L and H refertothelow-andhigh-temperature reservoirs, respectively.<br />

Now consider the two reversible heat engines connected in series shown in Figure 7.6. The thermal efficiency of<br />

each of the individual reversible heat engines is determined from an analysis of systems A and B individually.<br />

The thermal efficiency of the engine in system A is 5<br />

and that in system B is<br />

ðη T Þ A<br />

= W A<br />

= 1 − jQ 2j<br />

Q 1 Q 1<br />

ðη T Þ B<br />

= W B<br />

= 1 − jQ 3j<br />

Q 2 Q 2<br />

<br />

T<br />

= 1 − f 2<br />

T 1<br />

<br />

T<br />

= 1 − f 3<br />

T 2<br />

Now, if we include both engines inside the system boundary, as in system C of Figure 7.6, then we have W C =<br />

W A + W B , and utilizing the previous results, we can write<br />

System<br />

C<br />

System<br />

A<br />

System<br />

B<br />

ðη T Þ C<br />

= W C<br />

= W A + W B ð<br />

= Q 1 − jQ 2 jÞ+ ðjQ 2 j − jQ 3 jÞ<br />

Q 1 Q 1 Q 1<br />

= 1 − jQ <br />

2j<br />

+ jQ <br />

<br />

2j − jQ 3 j jQ2 j<br />

Q 1 jQ 2 j<br />

High-temperature<br />

thermal source<br />

at temperature T 1<br />

Q 1<br />

Cyclic heat<br />

engine A<br />

(reversible)<br />

Cyclic heat<br />

engine B<br />

(reversible)<br />

<br />

= 1 − f<br />

<br />

= 1 − f<br />

T 2<br />

T 1<br />

T 2<br />

T 1<br />

<br />

+ 1 − f<br />

<br />

<br />

T<br />

f 3<br />

T 2<br />

(W out ) = W A<br />

Q 2 at temperature T 2<br />

Q 3<br />

Low-temperature<br />

thermal sink<br />

at temperature T 3<br />

FIGURE 7.6<br />

Two reversible heat engines connected in series.<br />

(W out ) = W B<br />

T 3<br />

T 2<br />

<br />

<br />

f<br />

<br />

Q 1<br />

T 2<br />

T 1<br />

<br />

(7.11)<br />

We can also compute the heat engine thermal efficiency<br />

of system C as<br />

ðη T Þ C<br />

= W C<br />

Q 1<br />

= Q 1 − jQ 3 j<br />

Q 1<br />

= 1 − jQ 3j<br />

Q 1<br />

<br />

T<br />

= 1 − f 3<br />

T 1<br />

(7.12)<br />

Comparing Eqs. (7.11) and (7.12), we conclude that the<br />

following functional relation must hold for the unknown<br />

temperature function, f():<br />

<br />

f<br />

T 3<br />

T 1<br />

<br />

≡ f<br />

<br />

T 2<br />

f<br />

T 1<br />

<br />

T 3<br />

T 2<br />

(7.13)<br />

Many common functions do not satisfy this equation.<br />

For example,<br />

sin T <br />

3<br />

≠ sin T <br />

2<br />

sin T 3<br />

T 1 T 1 T 2<br />

log T <br />

3<br />

≠ log T <br />

2<br />

log T 3<br />

T 1 T 1 T 2<br />

exp T <br />

3<br />

≠ exp T <br />

2<br />

exp T 3<br />

T 1 T 1 T 2<br />

5 Since these engines are defined at the outset to be reversible, the rev subscript on the η T , , Q, and W terms in these equations has<br />

been dropped for simplicity. This subscript reappears in the equations at the end of this analysis.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!