05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

756 CHAPTER 18: Introduction to Statistical <strong>Thermodynamics</strong><br />

EXAMPLE 18.9 (Continued )<br />

Exercises<br />

25. Determine the values of c v and the ratio of c v /R for the nitrous oxide in Example 18.9 at 2000. K. Answer: (c v ) NO =<br />

0.930 kJ/kg·K and (c v /R) NO = 3.36.<br />

26. Using Eqs. (18.51a–d), compute the values for the specific enthalpy and the ratio of h/R for the nitrous oxide in<br />

Example 18.9 at 20.0°C. Answer: h NO = 948 kJ/kg (h trans = 203 kJ/kg, h rot = 81.2 kJ/kg, h vib = 664 kJ/kg), and<br />

(h/R) NO = 3420 K.<br />

27. Using Eqs. (18.54a–d), compute the values of the specific entropy and the ratio s/R for the nitrous oxide in Example<br />

18.9 at 20.0°C and a pressure of 1 atm. Answer: s NO = 6.63 kJ/kg·K (s trans = 5.03 kJ/kg·K, s rot = 1.60 kJ/kg·K,<br />

s vib = 0.0003 kJ/kg·K) and (s/R) NO = 23.9.<br />

18.13 POLYATOMIC MAXWELL-BOLTZMANN GASES<br />

Polyatomic gases are divided into two categories of molecular geometry: linear and nonlinear. Linear polyatomic<br />

molecules have only 2 degrees of rotational freedom, as in the case of diatomic molecules. However, they have<br />

3b−5 degrees of vibrational freedom, where b is the number of atoms in the molecule. Therefore, the equations<br />

used to calculate the translational and rotational contributions to the molecular energy are the same as those<br />

used for the diatomic molecule (i.e., parts a and b of Eqs. (18.49), and (18.51) through (18.54)). The equations<br />

for the vibrational contribution to the molecular energy of a linear polyatomic Maxwell-Boltzmann gas are<br />

u vib = ðu o Þ vib<br />

+ R∑ 3b−5<br />

i=1<br />

h vib = u vib = ðu o Þ vib + R∑ 3b−5<br />

Θ vi<br />

½expðΘ vi /TÞ− 1Š<br />

i=1<br />

Θ vi<br />

½expðΘ vi /TÞ− 1Š<br />

(18.55a)<br />

(18.55b)<br />

ðc v Þ vib = R∑ 3b−5<br />

i=1<br />

ðΘ vi /TÞ 2 ½expðΘ vi /TÞŠ<br />

½expðΘ vi /TÞ− 1Š 2 (18.55c)<br />

and<br />

ðc p Þ vib = ðc v Þ vib = R∑ 3b−5<br />

i=1<br />

ðΘ vi /TÞ 2 ½expðΘ vi /TÞŠ<br />

½expðΘ vi /TÞ− 1Š 2 (18.55d)<br />

s vib = R∑ 3b−5<br />

i=1<br />

<br />

ln ½1 − expð−Θ vi /TÞŠ −1 + ðΘ vi /TÞ/ ½expðΘ vi /TÞ− 1Š<br />

where the vibrational internal energy at absolute zero temperature is now found from<br />

(18.55e)<br />

since there are now 3b−5 characteristic vibrational temperatures Θ vi.<br />

3b−5<br />

ðu o Þ vib = ∑ RΘ vi /2 (18.56)<br />

i=1<br />

EXAMPLE 18.10<br />

Carbon dioxide is a linear triatomic molecule that has the following characteristic temperatures<br />

Θ r = 0:562 K<br />

Θ v1 = 1932 K<br />

Θ v2 = Θ v3 = 960: K<br />

Θ v4 = 3380 K

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!