05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

15.10 Entropy Production in Chemical Reactions 623<br />

Since all of the enthalpy values used thus far in this chapter are based on a standard reference state of T°=25.0°C<br />

and p°=0.100 MPa, it would be convenient to be able to shift our absolute entropy scale to this reference state,<br />

T °. Todothis,wedefines° to be the absolute molar specific entropy at the standard reference state and use<br />

Eq. (7.35) with p = p°=constant to obtain<br />

s° =sp°, ð T° Þ abs<br />

=<br />

Z T°<br />

°<br />

c P ðdT/TÞ<br />

Values for the s° of various compounds can be found in Table 15.7. The absolute molar specific entropy at any<br />

other state at pressure p and temperature T is given by<br />

sp, ð TÞ abs<br />

= s°+Δsðp° ! p, T° ! TÞ<br />

where Δs represents the change in molar specific entropy between the state at (p°, T°) and that at (p, T). For an<br />

incompressible substance, this becomes<br />

and for an ideal gas it becomes<br />

<br />

sp, ð TÞabs<br />

= s°+<br />

incompressible<br />

substance<br />

<br />

sðp, TÞabs ideal = s°+<br />

gas<br />

Z T<br />

T°<br />

c P ðdT/T<br />

Z T<br />

T°<br />

cdT/T ð Þ<br />

Þ− R lnðp/p°<br />

Þ<br />

If these substances have constant (or averaged) specific heats in the range of T° to T, thentheseequationscan<br />

be integrated to give<br />

and<br />

<br />

sp, ð TÞabs<br />

incompressible = s°+c lnðT/T°<br />

Þ (15.23)<br />

substance<br />

½sðp, TÞ abs Š ideal<br />

gas<br />

= s°+c p lnðT/T°<br />

Þ− R lnðp/p°<br />

Þ (15.24)<br />

Table 15.7 Molar Specific Absolute Entropy and Molar Specific Gibbs Function of Formation<br />

at 25.0°C and 0.100 Mpa<br />

s o<br />

g o f<br />

Substance<br />

kJ/(kgmole ·K) Btu/(lbmole·R) MJ/kgmole Btu/lbmole<br />

Carbon monoxide, CO 197.653 47.219 −137.150 −59,003<br />

Carbon dioxide, CO 2 213.795 52.098 −394.374 −169,664<br />

Water, H 2 O(g) 188.833 45.132 −228.583 −98,333<br />

Water, H 2 O(l) 70.049 16.742 −237.178 −102,036<br />

Methane, CH 4 186.256 44.516 −50.751 −21,834<br />

Acetylene, C 2 H 2 200.958 48.030 +2011.234 +90,015<br />

Ethylene, C 2 H 4 2111.548 52.473 +68.207 +29,343<br />

Ethane, C 2 H 6 2211.602 54.876 −32.777 −14,101<br />

Propane, C 3 H 8 270.019 64.361 −23.316 −10,031<br />

Butane, C 4 H 10 310.227 74.146 −16.914 −7,276<br />

Octane, C 8 H 18 (g) 466.835 111.576 +16.859 +7,253<br />

Octane, C 8 H 18 (l) 360.896 86.256 +6.940 +2,986<br />

Carbon, CðsÞ 5.740 1.372 0 0<br />

Oxygen, O 2 (g) 205.138 411.029 0 0<br />

Hydrogen, H 2 (g) 130.684 31.234 0 0<br />

Nitrogen, N 2 (g) 191.610 45.796 0 0<br />

Source: Van Wylen, G. J., Sonntag, R. E., 1976. Fundamentals of Classical <strong>Thermodynamics</strong>, SI Version, second ed. Wiley, New York, p. 496<br />

(Table 12.3). Copyright © 1976 John Wiley & Sons. Reprinted by permission of John Wiley & Sons. Data on C, O 2 ,H 2 , and N 2 are from the<br />

Journal of Physical and Chemical Reference Data, 11, Suppl. 2 (1982). Used with permission.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!