05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

10.10 Modified Availability Rate Balance (MARB) Equation 337<br />

The unknowns are the inlet specific flow availability, the exit specific flow availability, and the irreversibility rate inside the<br />

nozzle. The system is open, and material is steam.<br />

a. The station data at the inlet and outlet of the nozzle are<br />

Station 1 Station 2s Ground State<br />

p 1 = 100: psia p 2s = p 2 = 10:0 psia x 0 = 0<br />

T 1 = 500:°F s 2s = s 1 = 1:7087 Btu/lbm.R T 0 = 70:0°F<br />

h 1 = 1279:1 Btu/lbm x 2s = 0:94735 s 0 = 0:0746 Btu/lbm.R<br />

s 1 = 1:7087 Btu/lbm.R h 2s = 161:2 + 0:94735ð982:1Þ<br />

= 1091:6 Btu/lbm<br />

Since this an aergonic, adiabatic, steady state, steady flow, single-inlet, single-outlet system, we can use the energy rate<br />

balance with V 1 = 0andZ 1 = Z 2 = 0 to determine the isentropic exit velocity as<br />

V 2s = ½2g c ðh 1 − h 2s ÞŠ 1/2<br />

= ½2ð32:174 lbm.ft/lbf .s 2 Þð1279:1 − 1091:6 Btu/lbmÞð778:16 ft.lbf/BtuÞŠ 1/2<br />

= 3064 ft/s<br />

and the actual exit velocity is V 2 = 0.95 × V 2s = 0.95(3064) = 2911 ft/s. We can use the energy rate balance to calculate the<br />

actual exit specific enthalpy as<br />

h 2 = h 1 − V2 2<br />

2g c<br />

= 1279:1 Btu/lbm −<br />

Then, we can determine the actual quality of the exit steam as<br />

from which we can calculate the actual entropy at the exit as<br />

The specific flow availability is defined by Eq. (10.20) as<br />

ð2911 ft/sÞ 2<br />

<br />

<br />

2 32:174 lbm .ft<br />

lbf .s 2<br />

778:16 ft .lbf<br />

Btu<br />

x 2 = ðh 2 − h 2f Þ/h 2fg = ð1110 − 161:2Þ/982:1 = 0:9660<br />

s 2 = s 2f + x 2 s 2fg = 0:2836 + ð0:9660Þð1:5043Þ = 1:7368 Btu/lbm.R<br />

a f = h − h 0 − T 0 ðs − s 0 Þ + V2<br />

2g c<br />

+ gZ<br />

g c<br />

from which we can now calculate the entrance specific flow availability as<br />

= 1110 Btu/lbm<br />

a f 1 = ð1279:1 − 38:1 Btu/lbmÞ − ð70:0 + 459:67 RÞð1:7087 − 0:0746 Btu/lbm.RÞ<br />

+ 0 + 0 = 375 Btu/lbm<br />

b. The specific flow availability at the exit can now be determined from Eq. (10.20) as<br />

a f 2 = ð1109:9 − 38:1 Btu/lbmÞ − ð70:0 + 450:67 RÞð1:7368 − 0:0746 Btu/lbm.RÞ<br />

ð2910:9ft a sÞ 2<br />

+ <br />

2 32:174 lbm <br />

.ft<br />

lbf .s 2 778:16 ft + 0 = 361Btu/lbm<br />

.lbf<br />

Btu<br />

c. The irreversibility rate for this system is given by Eq. (10.26) as<br />

<br />

_I = 1 − T 0<br />

T b<br />

_Q − _W + _mða f 1 − a f 2 Þ<br />

and, since _Q = _W = 0 here, this equation reduces to<br />

or<br />

_I = _m ða f 1 − a f 2 Þ<br />

_I = ð2:80 lbm/sÞð375 − 361 Btu/lbmÞ = 39:2 Btu/s<br />

(Continued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!