05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

682 CHAPTER 16: Compressible Fluid Flow<br />

p osi<br />

p ose<br />

h i = h oi<br />

h<br />

Actual<br />

nozzle<br />

process<br />

Exit actual<br />

specific kinetic<br />

energy,<br />

V 2 e /2g c<br />

h e<br />

h es<br />

p e<br />

s i<br />

s<br />

s e<br />

FIGURE 16.24<br />

The thermodynamic process path of a nozzle plotted on h–s coordinates.<br />

Also, it is common to define a nozzle discharge coefficient C d as<br />

C d =<br />

Actual mass flow rate<br />

Isentropic mass flow rate =<br />

_m actual<br />

ðρAVÞ =<br />

actual<br />

(16.41)<br />

_m isentropic ðρAVÞ isentropic<br />

Typical nozzle discharge coefficients run from 0.60 for sharp-edged nozzles (i.e., orifices) at low flow rates to<br />

0.99 for properly designed nozzles at high flow rates.<br />

EXAMPLE 16.14<br />

Helium enters a newly designed test nozzle at 456.2 kN/m 2 and 283.7 K with a negligible velocity. The exit velocity,<br />

temperature, and pressure are measured at the instant when the nozzle first becomes choked and are found to be 474.8 m/s,<br />

370.4 kN/m 2 , and 260.1 K, respectively. For these conditions, determine the nozzle’s<br />

a. Efficiency.<br />

b. Velocity coefficient.<br />

c. Discharge coefficient.<br />

Solution<br />

■ Equation (16.39) gives the nozzle’s efficiency η N as<br />

k−1<br />

ðV exit /c inlet Þ 2<br />

η N =<br />

2<br />

1 − ðp exit /p inlet<br />

Þ ðk−1Þ/k<br />

For helium, k = 1.67 and R = 2.007 kJ/kg·K, and since the flow enters the nozzle with a negligible inlet velocity, we can<br />

take T inlet ≈ T osi and p inlet ≈ p osi . Then,<br />

p<br />

c inlet ≈ c osi =<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

ð1:67Þð1Þ½2077 m 2 /ðs 2 . KÞŠð283:7KÞ<br />

= 992 m/s<br />

and<br />

0:67<br />

ð474:8/992Þ 2<br />

η N =<br />

2<br />

= 0:957<br />

0:67/1:67<br />

1 − ð370:4/456:2Þ ■<br />

Equation (16.40) quickly gives the nozzle’s velocity coefficient C v as<br />

p<br />

C v =<br />

ffiffiffiffiffi pffiffiffiffiffiffiffiffiffiffiffiffi<br />

η N = 0:957 = 0:978

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!