05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

16.9 Shock Waves 679<br />

6<br />

5<br />

4<br />

S P /(m R )<br />

3<br />

2<br />

1<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Upstream Mach number M x<br />

FIGURE 16.23<br />

A plot of Eq. (16.38) for air (k = 1.4) utilizing Eqs. (16.35), (16.36), and (16.37). Note that the second law of thermodynamics requires<br />

that _S p /ð _m R Þ ≥ 0 for all processes.<br />

EXAMPLE 16.12<br />

A spacecraft directional control thruster is a converging-diverging nozzle that uses high-pressure and high-temperature air.<br />

The air enters with isentropic stagnation properties of 7.00 MPa and 2000.°C. The throat diameter is 0.0200 m and the<br />

diameter of the exit of the diverging section is 0.100 m. Determine<br />

a. The mass flow rate required for supersonic flow in the diverging section.<br />

b. The Mach number, pressure, and temperature at the exit of the diverging section with this mass flow rate.<br />

c. The outside back pressure required to produce a standing normal shock wave at the exit of the diverging section.<br />

Solution<br />

a. To have supersonic flow in the diverging section of a converging-diverging nozzle, the throat must have a Mach number of<br />

unity (i.e., be choked). Therefore, the mass flow rate is the maximum value for air, in SI units, given by Eq. (16.22c), or<br />

pffiffiffiffiffiffi<br />

_m = _m max = 0:0404 p os A /<br />

where A = πðD Þ 2 /4 = πð0:0200 mÞ 2 /4 = 3:14 × 10 −4 m 2 : Then,<br />

<br />

_m = 0:0404 kg p ffiffiffi <br />

. K /ðN .sÞ ð 7:00 × 10 6 N/m 2 Þð3:14 × 10 − 4 m 2 Þ<br />

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

= 1:86 kg=s<br />

2000: + 273:15 K<br />

b. Here, A exit /A = ðD exit /D Þ 2 = ð0:100/0:0200Þ 2 = 25:0: Then, Eq. (16.23) can be inverted to find M exit , and p exit and T exit<br />

can be found from Eqs. (16.13) and (16.12), respectively. Unless these equations are programmed into a computer, this<br />

can be a tedious set of calculations. Table C.18 in Thermodynamic Tables to accompany <strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong><br />

was created to eliminate this tedium by tabulating these equations. The preceding area ratio is a direct entry into this<br />

table, so we use it and read<br />

M exit = 5:00<br />

p exit /p os = 1:89 × 10 −3 and<br />

T exit /T os = 0:16667<br />

Then, p exit = ð1:89 × 10 −3 Þð7:00 × 10 6 N/m 2 Þ = 13:2 kN/m 2 and<br />

T os<br />

T exit = ð0:16667Þð2000: + 273:15 KÞ = 378:8K<br />

The velocity of sound at the exit is<br />

p<br />

c exit =<br />

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi p<br />

kg c RT exit = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

ð1:40Þð1Þ½286 m 2 /s ð<br />

2 . KÞŠð378:8KÞ<br />

= 390: m/s<br />

then,<br />

V exit = c exit M exit = ð390: m/sÞð5:00Þ = 1950 m/s:<br />

(Continued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!