05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

432 CHAPTER 12: Mixtures of Gases and Vapors<br />

EXAMPLE 12.14 (Continued )<br />

The molecular masses of the components are found in Table C.12a in Thermodynamic Tables to accompany <strong>Modern</strong> <strong>Engineering</strong><br />

<strong>Thermodynamics</strong> as<br />

then, Eq (12.12) gives the molecular mass of the mixture as<br />

M m =<br />

1<br />

∑ 2<br />

w i<br />

i=1<br />

M i<br />

=<br />

M methane = 16:043 lbm=lbmole<br />

M propane = 44:097 lbm=lbmole<br />

1<br />

w methane<br />

+ w =<br />

propane<br />

M methane M propane<br />

1<br />

0:429<br />

16:043 + 0:571<br />

44:097<br />

= 25:2 lbm<br />

lbmole<br />

The Dalton compressibility factors for the components, Z Di ,arefoundfromthereducedtemperatureT Ri and the reduced<br />

pseudospecific volume v′ Ri for each component. From Tables C.12a and C.13a, we find that<br />

The specific volume of the mixture is<br />

ðp c Þ methane = 673 psia, (T c Þ methane = 343:9 R, and R methane = 96:3ft.lbf=ðlbm.RÞ<br />

ðp c Þ propane<br />

= 617 psia, (T c Þ propane<br />

= 665:9 R, and R propane = 35:0ft.lbf=ðlbm.RÞ<br />

v m = V m 1:00 ft3<br />

=<br />

m m 7:00 lbm = 0:143 ft3 /lbm<br />

then, the reduced temperature and reduced pseudospecific volume for methane are<br />

ðT R Þ methane<br />

=<br />

T m 240: + 459:67 R<br />

= = 2:03<br />

ðT c Þ methane<br />

343:9R<br />

and<br />

For propane, they are<br />

ðv′ R Þmethane =<br />

<br />

<br />

=<br />

v m<br />

w methane<br />

<br />

ðp c<br />

R methane T c<br />

Þ methane<br />

ð Þ methane<br />

<br />

0:143 ft 3 =lbm mixture<br />

0:429 lbm methane=lbm mixture<br />

= 0:975<br />

<br />

×<br />

<br />

ð673 lbf=in 2 Þð144 in 2 =ft 2 <br />

Þ<br />

ð96:3ft.lbf=lbm.RÞð343:9RÞ<br />

and<br />

<br />

v<br />

ðv′ R Þpropane = m<br />

w propane<br />

=<br />

ðT R Þ propane<br />

=<br />

T m 240: + 459:67 R<br />

= = 1:05<br />

ðT c Þ propane<br />

665:9R<br />

!<br />

ðp c Þ propane<br />

ð Þ propane<br />

R propane T c<br />

<br />

0:143 ft 3 =lbm mixture<br />

<br />

0:571 lbm methane=lbm mixture<br />

= 0:955<br />

<br />

×<br />

ð617 lbf=in 2 Þð144 in 2 =ft 2 Þ<br />

ð35:0ft.lbf=lbm.RÞð665:9RÞ<br />

<br />

Using Figure 7.6 with T R = 2.03 and v′ R = 0:975, we find that the Dalton compressibility factor for methane is (Z D ) methane =<br />

0.975; and using T R = 1.05 and v′ R = 0:95, we find that the Dalton compressibility factor for propane is (Z D ) propane = 0.720.<br />

Then, Eq. (12.36) gives the mixture Dalton compressibility factor as<br />

Z Dm = ∑ 2 <br />

w i M m<br />

Z Di =<br />

i=1<br />

M i<br />

<br />

= ð0:429Þð25:2Þ <br />

16:043<br />

<br />

w methaneM m<br />

M methane<br />

<br />

ð0:975Þ +<br />

The mixture gas constant can be easily calculated from<br />

<br />

ðZ D Þ methane<br />

+<br />

ð0:571Þð25:2Þ<br />

44:097<br />

<br />

w <br />

propaneM m<br />

M propane<br />

<br />

ð0:720Þ = 0:892<br />

ðZ D Þ propane<br />

R m =<br />

R M m<br />

= 1545:35 ft .lbf/ðlbmole.RÞ<br />

25:2 lbm/lbmole<br />

= 61:3 ft .lbf<br />

lbm.R

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!