05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

18.5 Molecular Velocity Distributions 737<br />

Equation (18.24) can be evaluated to find the fraction of molecules whose velocities lie in the range from<br />

0toV as<br />

Nð0 ! VÞ<br />

N<br />

= erfðxÞ − p 2 ffiffiffi xe −x2 (18.25)<br />

π<br />

and to find the fraction of molecules whose velocities lie in the range from V to ∞ as<br />

where x = V/V mp in each case.<br />

NðV ! ∞Þ<br />

N<br />

= 1 −<br />

Nð0 ! VÞ<br />

N<br />

= 1 − erfðxÞ + p 2 ffiffiffi xe −x2 (18.26)<br />

π<br />

EXAMPLE 18.3<br />

Test assumption 7 at the beginning of this section by computing the fraction of neon molecules at 273 K whose velocities are<br />

faster than (a) V mp , (b) V avg , (c) V rms , and (d) c (the speed of light). Use the molecular data for neon given in Example 18.2.<br />

Solution<br />

a. The fraction having velocities greater than V mp is given by Eq. (18.26) with x = V mp /V mp = 1:0 as<br />

or<br />

NðV mp ! ∞Þ<br />

N<br />

NðV mp ! ∞Þ<br />

N<br />

Thus, 57.24% of the molecules have velocities faster than V mp .<br />

b. Here, Eq. (18.20) gives<br />

= 1 − erfð1:0Þ + p 2 ffiffiffi ð1:0Þ e −1:0<br />

π<br />

= 1 − 0:8427 + 0:4151 = 0:5724<br />

rffiffiffiffiffiffiffiffi<br />

rffiffiffiffiffiffiffiffi<br />

V avg =<br />

8kT<br />

, V mp =<br />

2kT<br />

,<br />

πm m<br />

and<br />

x = V avg<br />

V mp<br />

=<br />

rffiffiffiffiffi<br />

8<br />

= 1:128<br />

2π<br />

Therefore, the fraction of molecules having velocities greater than V avg is given by interpolating in Table 18.2 to find<br />

NðV avg ! ∞Þ<br />

N<br />

= 1 − erfð1:128Þ + p 2 ffiffiffi ð1:128Þe −1:272<br />

π<br />

= 1 − 0:8893 + 0:3566 = 0:4673<br />

Consequently, 46.73% of the molecules have velocities faster than V<br />

p<br />

avg.<br />

c. Here, Eq. (18.21) gives V rms = ffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

3kT/m,so<br />

qffiffi<br />

x = V rms /V mp = 3 = 1:225<br />

2<br />

and<br />

NðV rms ! ∞Þ<br />

N<br />

= 1 − erfð1:225Þ + p 2 ffiffiffi ð1:225Þe − 1:501<br />

π<br />

= 1 − 0:9168 + 0:3081 = 0:3913<br />

or 39.13% of the molecules have velocities greater than V rms .<br />

d. It can be shown (see Problem 10 at the end of this chapter) that, when V/V mp ≫ 1, the fraction of molecules with<br />

velocities in the range from V to ∞ is approximately given by<br />

NðV ! ∞Þ<br />

N<br />

≈ 2 <br />

pffiffiffi<br />

π<br />

x + 1 <br />

e −x2 ðfor x ≫ 1 onlyÞ<br />

2x<br />

(Continued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!