05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

11.10 Compressibility Factor and Generalized Charts 395<br />

and since this is an isothermal process, T 2 = T 1 and the ideal gas portion of this equation for a constant specific heat<br />

gas is h 2<br />

* − h 1<br />

* = c p ðT 2 − T 1 Þ = 0: The properties of ethylene at its critical state and its molecular mass are found in<br />

Table C.12a as T c = 508.3 R, p c = 742 psia, and M = 28.05 lbm/lbmoles. Then,<br />

p R1 = 150:<br />

742 = 0:202 and T 80:0 + 459:67<br />

R1 = = 1:06<br />

508:3<br />

p R2 =<br />

15:0 × 103<br />

742<br />

= 20:2 and T R2 = T R1 = 1:06<br />

Using p R1 = 0.202 and T R1 = 1.06, Figure 11.9 gives the enthalpy correction for state 1 as<br />

<br />

<br />

<br />

<br />

h* − h<br />

kJ<br />

= 1:50<br />

T c 1<br />

kgmole.K = 1:50 kJ 1 Btu/ðlbmole.RÞ<br />

= 0:360<br />

Btu<br />

kgmole.K 4:1865 kJ/ðkgmole.KÞ lbmole.R<br />

and using p R2 = 20.2 and T R2 = 1.06, Figure 11.9 gives the enthalpy correction for state 2 as<br />

<br />

h* − h<br />

T c 2<br />

Then, Eq. (11.41) gives<br />

<br />

<br />

kJ<br />

= 31:5<br />

kgmole.K = 31:5 kJ<br />

kgmole.K<br />

1 Btu/ðlbmole.RÞ<br />

4:1865 kJ/ðkgmole.KÞ<br />

<br />

<br />

h 2 − h 1 = ðh*− 2 h<br />

h* − h<br />

*Þ 1<br />

−<br />

−<br />

h* − h<br />

<br />

T c 2<br />

T c 1<br />

<br />

= 0 − ½7:52 − 0:360 Btu/ðlbm.RÞŠ<br />

= −130: Btu<br />

lbm<br />

<br />

Tc<br />

M<br />

<br />

Btu<br />

= 7:52<br />

lbmole.R<br />

<br />

508:3R<br />

28:05 lbm/lbmole<br />

Note that, since the compressibility charts cannot be read to more than two or three significant figures, our final<br />

calculation results are limited to this accuracy as well.<br />

b. The compressibility charts do not give values for the specific internal energy, so it must be calculated from the definition<br />

of enthalpy as u = h – pv, oru 2 – u 1 = h 2 – h 1 – (p 2 v 2 – p 1 v 1 ), where v 1 = Z 1 RT 1 /p 1 and v 2 = Z 2 RT 2 /p 2 . For p R1 = 0.202<br />

and T R1 = 1.06, Figure 11.5 gives Z 1 = 0.940, and for p R2 = 20.2 and T R2 = T R1 = 1.06, Figure 11.7 gives Z 2 = 2.15. The<br />

gas constant R for ethylene can be found in Table C.13a as R = 55.1 ft ·lbf/(lbm·R). Then,<br />

<br />

v 1 = Z 1RT 1<br />

p 1<br />

= 0:940½55:1ft .lbf/ðlbm.RÞŠð80:0 + 459:67 RÞ<br />

ð150: lbf/in 2 Þð144 in 2 /ft 2 Þ<br />

= 1:29 ft3<br />

lbm<br />

and<br />

v 2 = Z 2RT 2<br />

p 2<br />

= 2:15½55:1ft .lbf/ðlbm.RÞŠð80 + 459:67 RÞ<br />

ð15:0 × 10 3 lbf/in 2 Þð144 in 2 /ft 2 Þ<br />

= 0:030 ft3<br />

lbm<br />

Then,<br />

u 2 − u 1 = h 2 − h 1 − ðp 2 v 2 − p 1 v 1 Þ<br />

= 130: Btu <br />

<br />

<br />

<br />

<br />

− 15:0 ×<br />

lbf<br />

103<br />

lbm in 2 144 in2<br />

ft 2 0:0300 ft3 1 Btu<br />

lbm 778:16 ft .lbf<br />

<br />

− 150: lbf <br />

<br />

<br />

<br />

in 2 144 in2<br />

ft 2 1:29 ft3 1 Btu<br />

lbm 778:16 ft .lbf<br />

= − 180: Btu<br />

lbm<br />

c. Finally, from Eq. (11.42), we have the change in specific entropy as<br />

<br />

<br />

s 2 − s 1 = ðs 2<br />

* − s*Þ 1<br />

− ðs* − sÞ 2<br />

− ðs* − sÞ 1<br />

1<br />

M<br />

(Continued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!