05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

684 CHAPTER 16: Compressible Fluid Flow<br />

Inlet specific kinetic energy,V 2 i /2g c<br />

An ideal diffuser has a negligible exit velocity, so<br />

p es = p ose and<br />

h<br />

h oi<br />

h es<br />

h e<br />

h i<br />

s i<br />

s<br />

s e<br />

p osi<br />

p ose<br />

p e<br />

Maximum (i.e., isentropic)<br />

recoverable portion of the<br />

inlet kinetic energy<br />

p i<br />

Actual diffuser process<br />

FIGURE 16.25<br />

Thermodynamic process path of a diffuser plotted on h–s<br />

coordinates.<br />

T es /T inlet = ðp es /p inlet<br />

Þ ðk−1<br />

Then, the equation for η D becomes<br />

η D =<br />

Now, from Eq. (16.13),<br />

Þ/k = ðp ose /p inlet<br />

ð p ose/p inlet Þ ðk−1Þ/k<br />

− 1<br />

ðk−1ÞM 2 inlet /2<br />

<br />

p inlet = p osi 1 + k − 1 − k/ðk−1Þ<br />

2 M2 inlet<br />

Þ ðk−1Þ/k<br />

so that the diffuser efficiency can be written in terms<br />

of the inlet Mach number and the isentropic stagnation<br />

pressure ratio as<br />

Diffuser efficiency<br />

<br />

1 + k − 1 <br />

η D =<br />

2 M2 inlet<br />

ðp ose /p osi Þ ðk−1Þ/k − 1<br />

ðk − 1ÞM 2 inlet /2 (16.42)<br />

Therefore, for a constant isentropic stagnation pressure ratio, the diffuser efficiency decreases as the inlet Mach<br />

number increases, asymptotically approaching the value (p ose /p osi ) (k–1)/k as the inlet Mach number goes to infinity.<br />

A more direct measure of a diffuser’s ability to convert kinetic energy into pressure is the diffuser pressure recovery<br />

coefficient C p , defined as<br />

C p =<br />

Actual diffuser pressure rise<br />

Isentropic diffuser pressure rise =<br />

Because of flow separation from the diffuser wall, C p values are typically around 0.6.<br />

ð p exitÞ actual<br />

– p inlet<br />

(16.43)<br />

p osi – p inlet<br />

EXAMPLE 16.15<br />

A subsonic diffuser for a spacecraft attitude control thruster has been tested in the laboratory with an inlet Mach number of<br />

0.890, using pure nitrogen as the working gas. The inlet and exit isentropic stagnation pressures are measured and found to<br />

be p osi = 314.7 kPa and p ose = 249.3 kPa. Determine, under these conditions, the diffuser’s (a) efficiency and (b) pressure<br />

recovery coefficient.<br />

Solution<br />

a. The diffuser’s efficiency can be determined directly from the measured conditions using Eq. (16.42) as follows:<br />

η D =<br />

<br />

1 + k − 1<br />

2 M2 inlet<br />

ðk−1Þ/k<br />

− 1<br />

pose<br />

p osi<br />

ðk−1ÞM 2 inlet /2<br />

1:40 − 1<br />

<br />

1 + 1:40 − 1 <br />

0:890 2 249:3 1:40<br />

− 1<br />

=<br />

2<br />

<br />

314:7<br />

= 0:529 = 52:9%<br />

1:40 − 1<br />

0:890 2<br />

2<br />

b. The diffuser’s pressure recovery coefficient can be determined from Eq. (16.43), if we can determine the actual inlet and<br />

exit pressures from the given data. Equation (16.13) can be used to relate the actual pressures to their isentropic<br />

stagnation values as<br />

p<br />

<br />

ose<br />

= 1 + k − 1 k<br />

p e 2 M2 k−1<br />

exit<br />

and<br />

p<br />

<br />

osi<br />

= 1 + k − 1 k<br />

p i 2 M2 k−1<br />

inlet

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!