05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 2<br />

Thermodynamic Concepts<br />

CONTENTS<br />

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

2.2 The Language of <strong>Thermodynamics</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

2.3 Phases of Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

2.4 System States and Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

2.5 Thermodynamic Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

2.6 Thermodynamic Processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br />

2.7 Pressure and Temperature Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

2.8 The Zeroth Law of <strong>Thermodynamics</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

2.9 The Continuum Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

2.10 The Balance Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

2.11 The Conservation Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />

2.12 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

2.1 INTRODUCTION<br />

Some students have difficulty with thermodynamics because it is such a broad subject. <strong>Engineering</strong> courses like<br />

statics, dynamics, and materials focus on just a few topics. <strong>Thermodynamics</strong>, on the other hand, deals with<br />

many issues that are common to a variety of engineering systems. A thermodynamic analysis can span the<br />

gamut from a huge power plant to the smallest microscopic system. It can often be applied in a fairly simple<br />

way to extremely complex systems (like biological systems) to provide profound results.<br />

One of the most powerful aspects of thermodynamics is its “black box” approach to system analysis. It is not<br />

necessary to know what takes place inside the box, it is necessary only to watch the box’s boundariesandsee<br />

what, and how much, crosses them. This is the essence of the balance concept, discussed later in this chapter. But<br />

we begin by introducing some basic thermodynamic definitions.<br />

<strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong>. DOI: 10.1016/B978-0-12-374996-3.00002-6<br />

© 2011 Elsevier Inc. All rights reserved. 33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!