05.04.2016 Views

Modern Engineering Thermodynamics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAPTER 16<br />

Compressible Fluid Flow<br />

CONTENTS<br />

16.1 Introducerea (Introduction). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651<br />

16.2 Stagnation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652<br />

16.3 Isentropic Stagnation Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653<br />

16.4 The Mach Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655<br />

16.5 Converging-Diverging Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660<br />

16.6 Choked Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665<br />

16.7 Reynolds Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669<br />

16.8 Linear Momentum Rate Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673<br />

16.9 Shock Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675<br />

16.10 Nozzle and Diffuser Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681<br />

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685<br />

16.1 INTRODUCEREA (INTRODUCTION)<br />

This chapter focuses the application of the laws of thermodynamics on the behavior of a very specific type of<br />

fluid, a compressible fluid. An incompressible fluid has a constant density independent of the magnitude of the<br />

applied pressure, but the density of a compressible fluid varies with the applied pressure.<br />

However, a compressible fluid does not exhibit compressibility effects whenever it is used in a system. Suppose<br />

you have a compressible fluid in a system in which pressure does not change significantly. Then, the effects of<br />

compressibility (density changes) do not appear and the compressible fluid behaves like an incompressible<br />

fluid. For example, in the heating and ventilating system of a building, the air flow rates are very low and the<br />

pressure and density changes are also very small. Consequently, air (by definition, a compressible fluid) behaves<br />

WHAT IS A COMPRESSIBLE FLUID?<br />

A compressible fluid is any fluid whose density varies significantly with pressure.<br />

WHEN CAN THE COMPRESSIBILITY OF A FLUID BE IGNORED?<br />

As a general rule of thumb, when V 2 ≪ Δp/Δρ, the compressibility of a fluid is negligible and it behaves like an incompressible<br />

fluid.<br />

<strong>Modern</strong> <strong>Engineering</strong> <strong>Thermodynamics</strong>. DOI: 10.1016/B978-0-12-374996-3.00016-6<br />

© 2011 Elsevier Inc. All rights reserved. 651

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!