05.04.2016 Views

Modern Engineering Thermodynamics

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

11.8 Thermodynamic Charts 381<br />

so that<br />

and<br />

T sat<br />

<br />

dp<br />

dT<br />

Z vg<br />

v0<br />

<br />

A<br />

− p sat = T 2<br />

sat<br />

sat<br />

Tsat<br />

2<br />

<br />

T sat<br />

<br />

dp<br />

dt<br />

− p sat<br />

sat<br />

<br />

<br />

exp½AŠ − exp½AŠ = A <br />

2<br />

− 1 exp½AŠ<br />

T sat<br />

<br />

dv =<br />

<br />

<br />

A 2<br />

− 1 exp½AŠ ðv g − v 0 Þ<br />

T sat<br />

Since Eq. (b) must be valid to the saturated vapor line, it can be solved to find v g . For this problem, Eq. (b) is a quadratic<br />

equation in v g with the following solution:<br />

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi<br />

v g = RT 2<br />

sat RT<br />

+ sat<br />

− T sat<br />

exp½BŠ<br />

2p sat 2p sat p sat<br />

From Eq. (c) and the preceding result for v g , we can now calculate v fg = v g – v f .<br />

Then, with c 0 v equal to a constant (D 1), we get<br />

Z Tsat<br />

<br />

u g − u 0 + T<br />

dp <br />

<br />

<br />

− p dv = u 0 + c 0 v<br />

dT<br />

ðT A<br />

sat − T 0 Þ + 2<br />

− 1 exp½AŠ ðv g − v 0 Þ<br />

T0<br />

sat<br />

T sat<br />

then, with v g from the preceding equation, we can easily find h g = u g + p sat v g .<br />

To find the saturated vapor entropy, we need to determine<br />

Z vg<br />

Z<br />

dp<br />

vg<br />

<br />

A<br />

dv = 2<br />

dT<br />

v0 sat<br />

T 2 exp½AŠdv =<br />

v0 sat<br />

Then, with c 0 v equal to a constant, we get s g = s 0 +<br />

Z Tsat<br />

c 0 v<br />

T0<br />

= s 0 + c 0 v ln T sat<br />

T 0<br />

Now, we can determine the remaining saturated liquid properties as<br />

<br />

dp<br />

h f = h g − h fg = h g − T sat v fg<br />

dT<br />

and<br />

<br />

<br />

A 2<br />

Tsat<br />

2 exp½AŠ ðv g − v 0 Þ<br />

Z v<br />

<br />

T dT + dp<br />

dv<br />

dT<br />

v0 sat<br />

<br />

<br />

A<br />

+ 2<br />

Tsat<br />

2 exp½AŠ ðv g − v 0 Þ<br />

sat<br />

<br />

A<br />

= h g − v 2<br />

fg<br />

T sat<br />

<br />

exp½AŠ<br />

<br />

<br />

A<br />

u f = u g − u fg = u g − ðh fg − p sat v fg Þ = u g − v 2<br />

fg exp½AŠ − p sat v fg<br />

T sat<br />

s f = s g − s fg = s g − h <br />

fg<br />

A<br />

= s g − v fg exp½AŠ 2<br />

T sat Tsat<br />

2<br />

Inserting the empirical values for the constants A 1 through D 1 into these equations provides the desired set of property<br />

relations for this material in the saturated region.<br />

Exercises<br />

31. Determine an expression for T(∂p/∂T ) v – p for the material described in Example 11.11 in the superheated region. Answer:<br />

<br />

∂p<br />

= R <br />

∂T v − 1 <br />

exp½BŠ − T <br />

− B <br />

2<br />

exp½BŠ = R<br />

v<br />

v 2 v 2 T 2 v − exp½BŠ <br />

1 − B <br />

2<br />

v 2 T<br />

so that<br />

<br />

T<br />

∂p <br />

− p = T<br />

R ∂T<br />

v − exp½BŠ <br />

v<br />

v 2 1 − B <br />

<br />

2<br />

−<br />

RT T v − T <br />

v 2 exp½BŠ<br />

<br />

= B <br />

2<br />

v 2 exp½BŠ<br />

where B = B 1 – B 2 /T.<br />

32. Determine an expression for the specific internal energy of the material in Example 11.11 in the superheated region.<br />

Answer:<br />

where B = B 1 – B 2 /T.<br />

u = u 0 +<br />

Z T<br />

T0<br />

Z v<br />

<br />

c 0 dT + T<br />

o~<br />

v0<br />

<br />

∂p <br />

∂T<br />

− p<br />

v<br />

<br />

dv = u 0 + c 0 v ðT − T 0Þ − B 2 exp½BŠ<br />

<br />

1<br />

v − 1 <br />

v 0<br />

(Continued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!